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Motivation

d be a scalar-valued random variable (desired output signal)

E [d ] = 0
E
[
d2
]
= σ2d

With realization {d (i) : i = 0, 1, 2, . . .}

u ∈ RM
(
CM
)
be a random vector (input signal)

E [u] = 0
Ru = E [u∗u] > 0
Rdu = E [du

∗]
With realization {ui : i = 0, 1, 2, . . .}

Problem
We want to solve

min
ω
E
[
(d − uω)2

]
(1)

where ω is the weights vector.
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Solution

By the steepest-descent algorithm

ωo = R−1u Rdu

which can be approximated by the following recursion with constant
step-size µ > 0

ωi = ωi−1 + µ [Rdu − Ruωi−1] , ω−1 = initial guess.

Remark
Ru and Rdu should be known, and fixed.
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Adaptive Filters

"Smart Systems"
Learning: Learns the Statistics of the Signal
Tracking: Adjusts the Behavior to Signal Variations

Practicle Reasons for Using Adaptive Filters
Lack of Statistical Information

Mean, Variance, Auto-correlation, Cross-correlation, etc

Variation in the Statistics of the Signal
Signal with Noise Randomly Moving in a Know/Unknown Bandwith
with Time

Types of Adaptive Filters
Least Mean Square (LMS) Filters

Normalized LMS Filters
Non-Canonical LMS Filters

Recursive Least Square (RLS) Filters
QR-RLS Filters
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Least Mean Square (LMS) Filters
Development Using Instantaneous Approximation

At time index i approximate

Ru = E [u∗u] by R̂u = u∗i ui
Rdu = E [du

∗] by R̂du = d (i) u∗i
Corresponding steepest-descent itteration

ωi = ωi−1 + µu∗i [d (i)− uiωi−1] , ω−1 = initial guess

where µ > 0 is a constant stepsize.
Remarks

Also known as the Widrow-Hoff algorithm.
Commonly used algorithm for simplicity.
µ is choosen to be 2−m for m ∈N.

Computational Cost

Complex-valued Signal: 8M + 2 real multiplications, 8M real additions.
Real-values Signal: 2M + 1 real multiplications, 2M real additions.
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Least Mean Square (LMS) Filters
An Illustration

ω

++


ω

u: input signal

d: desired output signal interference

Figure: An Illustration for Least Mean Square Filter
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Least Mean Square (LMS) Filters
An Application (1/3)
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Least Mean Square (LMS) Filters
An Application (2/3)

1
e(k)

Weight 4Weight 3Weight 2Weight 1

a b(a
b)

z0 Mult8

a b(a
b)

z0 Mult7
a b(a

b)
z0 Mult6

a b(a
b)

z0 Mult5

a b
(a

b)

z0 Mult4

a
b(ab)z0

Mult3

a
b(ab)z0

Mult2

a
b(ab)z0

Mult1

a
b(ab)z0

Mult

 Out

Gateway Out5

 Out

Gateway Out4

 Out

Gateway Out3

 Out

Gateway Out2

z1Delay9z1Delay8

z1

Delay7

z1

Delay6

z1

Delay5

z1Delay4

z1

Delay3

z1

Delay2

z1Delay10

z1

Delay1

0.0400390625

Constant

a ba 
+ 

b

AddSub7

a ba 
+ 

b

AddSub6

a ba 
+ 

b

AddSub5

a ba 
+ 

b

AddSub4

a b
a 

 bAddSub3

a

b
a + b

AddSub2
a

b
a + b

AddSub1
a

b
a + b

AddSub

2
x(k)

1 d(k)

weight1

weight1

e(k)

weight2

weight2

weight3

weight3

weight4

weight4

y (k)

step (2m)

H. Ahsan (ECE BSU) Adaptive Filters April 12, 2010 8 / 17



Least Mean Square (LMS) Filters
An Application (Error )(3/3)
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Normalized Least Mean Square (LMS) Filters

Solution to (1) using regularized Newton Recursion

ωi = ωi−1+µ (i) [ε (i) I − Ru ]−1 [Rdu − Ruωi−1] , ω−1 = initial guess.

where µ (i) > 0 is the stepsize and ε (i) is the regularization factor.
With µ (i) = µ > 0 and ε (i) = ε fixed for all i , using the
instantaneous approximation

ωi = ωi−1 + µ [εI − u∗i ui ]
−1 u∗i [d (i)− uiωi−1]

= · · ·
= ωi−1 +

µ

ε+ ‖ui‖2
u∗i [d (i)− uiωi−1]

Computational Cost
Complex-valued Signal: 10M + 2 real multiplications, 10M real
additions and one real division.
Real-values Signal: 3M + 1 real multiplications, 3M real additions and
one real division.
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Other LSM-Type Techniques

Power Normalization

Replace
µ

ε+ ‖ui‖2
with

µ/M

ε/M + ‖ui‖2 /M
, where M is the order of

the filter.

Definition
Non-Blind algorithms are so called since they employ a reference sequence
{d (i) : i = 0, 1, 2, . . .}.

Non-Blind Algorithm

Leaky LMS Algorithm

LMF Algorithm

LMMN Algorithm

Blind Algorithm

CMA1-2, NCMA
Algorithm

CMA2-2 Algorithm

RCA Algorithm

MMA Algorithm
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Non-Canonical Least Mean Square (LMS) Filters
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Recursive Least Square (RLS) Filters

Solution to (1) using regularized Newton Recursion

ωi = ωi−1+µ (i) [ε (i) I − Ru ]−1 [Rdu − Ruωi−1] , ω−1 = initial guess.

where µ (i) > 0 is the stepsize and ε (i) is the regularization factor.

Approximate Ru by R̂u =
1

i + 1

i

∑
j=0

λi−ju∗j uj , i.e. by an exponential

average of previous regressors.

If λ = 1 then all regressors have equal weight.
If 0� λ < 1 then recent regressors (i − 1, i − 2, . . .) are more relevant
and remote regressors are forgotten.
Generally λ is choosen so that 0� λ < 1, therefore RLS has a
memory or forgetting property.

Assume µ (i) =
1

i + 1
and ε (i) =

λi+1ε

i + 1
for all i . Then ε (i)→ 0 as

i → ∞, i.e. as time increases the regularization factor disappears.
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Recursive Least Square (RLS) Filters

Development using the instantaneous approximation

ωi = ωi−1 +

[
λi+1εI +

i

∑
j=0

λi−ju∗j uj

]−1
u∗i [d (i)− uiωi−1]

Define

Φi = λi+1εI +
i

∑
j=0

λi−ju∗j uj

then
Φi = λΦi−1 + u∗i ui , Φ−1 = εI

The matrix inversion formula for Pi = Φ−1i is given by

Pi = λ−1
[
Pi−1 −

λ−1Pi−1u∗i uiPi−1
1+ λ−1uiPi−1u∗i

]
, P−1 = ε−1I

With the simplification we obtain the RLS algorithm

ωi = ωi−1 + Piu∗i [d (i)− uiωi−1] , i = 0, 1, 2, . . .

Computational Cost
Complex-valued Signal: 4M2 + 16M + 1 real multiplications,
4M2 + 12M − 1 real additions and one real division.
Real-values Signal: M2 + 5M + 1 real multiplications, M2 + 3M real
additions and one real division.
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Least-Squares Problem

Replace E
[
|d − uω|2

]
by 1

N ∑N−1
i=0 |d − uω|2, then problem (1) is

modified to

min
ω

N−1
∑
i=0
|d (i)− uiω|2 = min

ω
‖y −Hω‖2 (2)

where

y =
[
d (0) d (1) · · · d (N − 1)

]
and

H =
[
uT0 uT1 · · · uTN−1

]T
Weighted Least-Squares

Let W be a weights matrix, then (2) can be modified to
min

ω
(y −Hω)∗W (y −Hω).

Regularized Least-Squares
Let Π > 0 be a regularization matrix, then (2) can be modified to

min
ω

[
ω∗Πω+ ‖y −Hω‖2

]
.
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Not Presented

Weighted, Regularized and Weighted and Regularized Least-Square
Algorithms

Array Methods for Adaptive Filters

Given’s Rotation

CORDIC Cells

QR-Recursive Least Square Algorithm
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