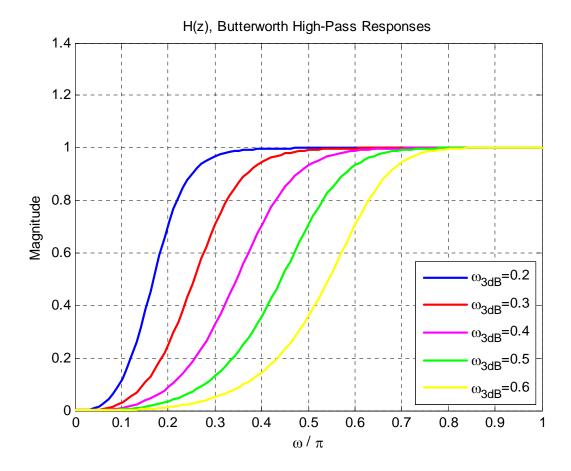


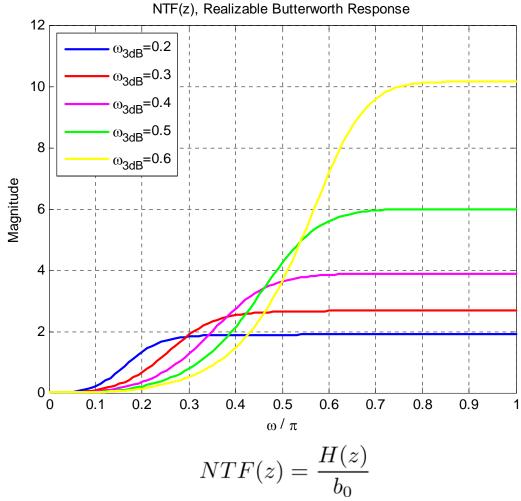
Shout with:
order (L) = 3,
$$\cos R = 64$$
, $n = 16$, $saw R \ge 100$, $115 dG$
ciprel band edge = $\overline{15}_{R} = \overline{16}_{4}$
. Showt with:
 $113 dG = \overline{16}_{R} = \overline{16}_{4}$
. Showt with:
 $123 dB = \overline{16}_{8} (M/M)$ layer that the signal band edge)
 44
. Showt with:
 $111 \frac{1}{12} \frac{$

NTF-Zero Optimization Textbook pages 107-111	
· Spread # zeros in the signal band to minimize the in-band noise (IBN). We => signal bandwidth	
N Zero locations normalized to WB	SANR increase
0	0 d13
1 + 1	3.5 dB
2 1/3	
3 0, 大哥	8 dB
4 $\pm \sqrt{\frac{3}{7}} \pm \sqrt{(\frac{3}{7})^2 - \frac{3}{35}}$	13dB
×	18 13
5 0, $\pm \sqrt{\frac{5}{9}} \pm \sqrt{(\frac{5}{9})^2 - \frac{5}{21}}$	
· Zero locations oblained by minimizing the noise integral numerically. · MATLAB DE Toolbox function: ds_optgeros(order, 1)	
χ Note: Use quantizer gain value $k = \frac{E(v; y)}{E(y^2)}$ obtained from simulations to find the actual NTF(z).	
* for even order NTFS, might want to place double zeros at z=1 for better DC suppression.	
NTF-pole optimization Stability unsiderations govern the pole placement Must satisfy $H(\infty)=1$, and $\ f_{H}\ _{\infty} \stackrel{2}{=} OBG constraints$ Must satisfy $H(\infty)=1$, and $\ f_{H}\ _{\infty} \stackrel{2}{=} OBG constraints$ Exhaustive searcher done using MATLAB DZ Toolbox (synthesize NTF()) function. Exhaustive searcher done using MATLAB DZ Toolbox (synthesize NTF()) function.	
· Stability insiderations for the	
. Must satisfy H(0)=1, and IHII = UBOI and Stalbox (synthesize NTF())	
· Exhaustive Searche done using MATILAB	
Wind ration Using the CLANS (closed-loop margins of	
 Exhaustive Searcher done using MATLAB BZ (Barton C) function. Better oplimization using the CLANS (closed-loop Analysis of noise-shapers) Better oplimization using the CLANS (closed-loop Analysis of noise-shapers) Better oplimization using the CLANS (closed-loop Analysis of noise-shapers) Clans () function in DEL Toolbox. 	
clans () function in	
DE Toolbox	

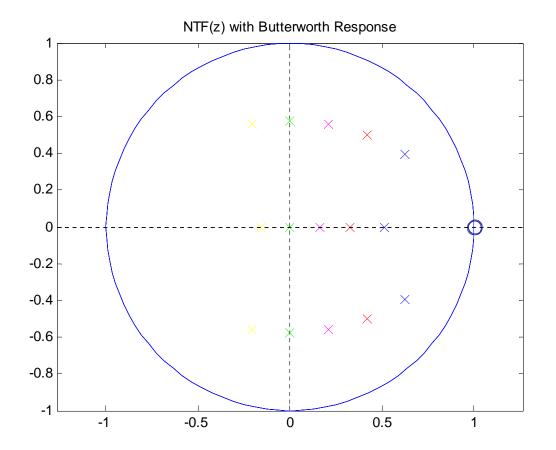

ECE 697 Delta-Sigma Converters Design

Lecture#12 Slides

Vishal Saxena (vishalsaxena@boisetstate.edu)



Butterworth High-Pass Responses


Realizable NTFs with Butterworth Response

File: ButterworthResponses.m

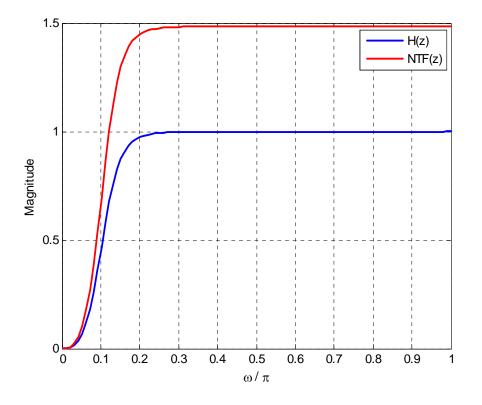
NTF Poles for Butterworth Responses

Systematic NTF Design Example

Specifications

- \checkmark SQNR > 120 dB
- \checkmark A signal bandwidth which results in an OSR = 64
 - Study optimal clock rate for the given process and quantizer design.

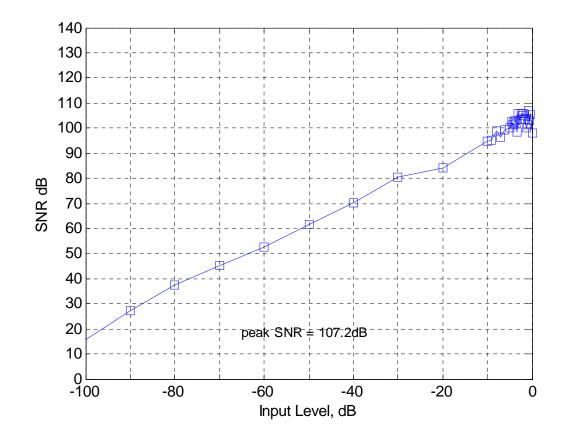
Designer's Choice


- \checkmark Order = 3
- ✓ Quantizer levels (nLev) = 16

✓ Butterworth high-pass response for the NTF.

Use MATLAB for finding coefficients of the HPF response.

- \checkmark [b,a] = butter(order, ω_{3dB} , 'high')
- ✓ The cutoff frequency ω_{3dB} specifies the transfer function.


Start with cutoff frequency ω_{3dB}=π/8, for the butterworth HPF H(z).
 Derive a realizable NTF using NTF(z)=H(z)/b₀

File: SystematicNTFDesign.m

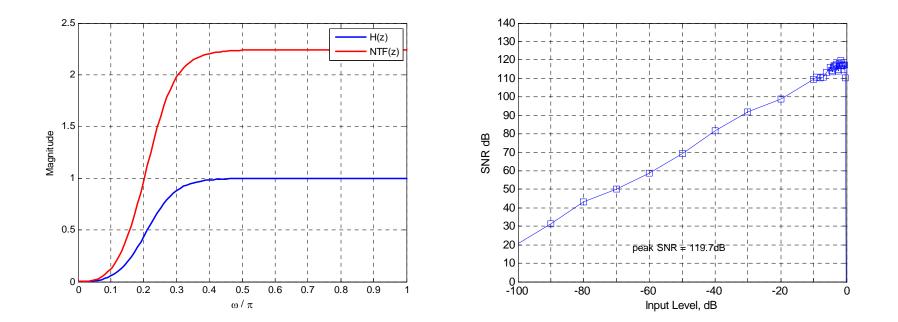
- Map the NTF response to a loop-filter architecture (details later).
- □ Simulate the modulator for all possible amplitudes and input tone frequencies.
- Compute the peak SNR and MSA.
 - ✓ May use simulateDSM function in the toolbox.

 $\Box Peak SNR = 107 dB$

 $\square MSA = 0.9$

File: SystematicNTFDesign.m

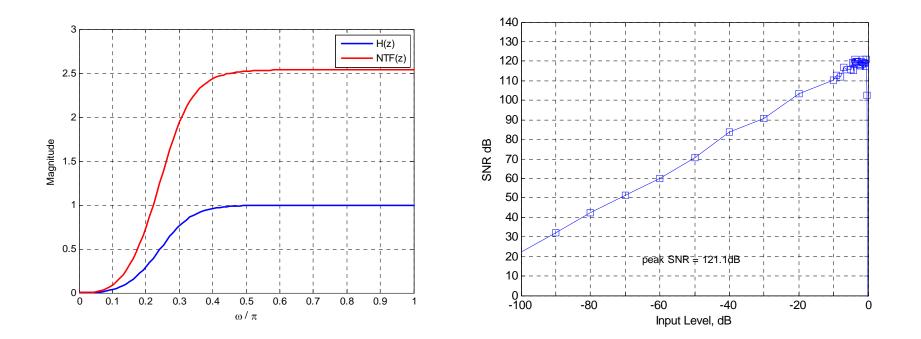
□ If SNR is not enough, repeat the entire procedure with a higher cutoff frequency for the Butterworth HPF


✓ IBN \downarrow , SQNR \uparrow

✓ OBG \uparrow and MSA \downarrow

- □ If SNR is too high, repeat the entire procedure with a lower cutoff frequency for the Butterworth HPF
 - ✓ IBN \uparrow , SQNR \downarrow

✓ OBG \downarrow and MSA \uparrow



• $\omega_{3dB} = \pi/4$. • Peak SNR = 119 dB, OBG = 2.25, MSA = 0.8

File: SystematicNTFDesign.m

 $\Box \omega_{3dB} = 2\pi/7.$

D Peak SNR = 121 dB, OBG = 2.54, MSA = 0.8.

✓ Design closed !

File: SystematicNTFDesign.m

- An advanced version of this iterative process is implemented as the function synthesizeNTF in the delta-sigma Toolbox.
 - ✓ Several 'opt' params for NTF zero (and pole) optimization.
 - Use synthesizeChebyshevNTF for low OSR and low OBG designs.
- CLANS algorithm by Kenney and Carley implemented as the clans function in the toolbox.

✓ Requires Optimization toolbox.

Exercise: Repeat the design procedure using an Inverse Chebyshev HPF response.

 \checkmark [b,a] = cheby2(n,R,w_{st});

References

 [1] S. Pavan, N. Krishnapura, "Tutorial: Oversampling Analog to Digital Converters," 21st International Conference on VLSI Design, Jan. 4, 2008.
 [Online]:<u>http://www.ee.iitm.ac.in/~nagendra/presentations/20080104vlsiconf/2008</u> 0104vlsiconf.pdf