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Agenda 

 Fundamentals of continuous-time (CT) ADCs 
 impulse invariance and CT loop-filter mapping 

 Inherent anti-alias filtering in CT ΔΣ ADCs 
 feedback vs. feedforward architectures. 

 CT ΔΣ ADC non-idealities: 
 Quantizer Excess loop-delay (ELD) 

 Clock jitter sensitivity 

 RC time-constant variation 

 CT- ΔΣ Design techniques: 
 NRZ, RZ and switched-capacitor DACs 

 Active-RC and gm-C implementations 

 ELD compensation techniques 
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Continuous-Time ΔΣ Modulators 

 The loop-filter (L(s)) is implemented using continuous-time 
circuitry 
 The modulator is still a discrete-time system 

 How to design the hybrid continuous- and discrete-time 
loop? 
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Feedback DAC 

 The input to the DAC is a digital code with time-period Ts 

 The DAC output is an analog waveform  

 The response of the DAC to the DT impulse, δ[n], is called 
the pulse-shape p(t)  

 Several choices for p(t) –  
 Return to zero (RZ) 

 Non-Return to zero (NRZ)  

 Switched capacitor Resistor (SCR), etc. 
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Loop Modeling 

 In general loop-filter is a 2-input, 1-output LTI system 

 L0(s) is the loop-filter seen by the input signal  

 L1(s)=L(s), is the loop-filter seen by the feedback signal 

 The DT loop-response around the ADC-DAC block should 
be preserved in the CT loop 
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Loop Modeling 

 Set input u(t)=0 

 Replace ADC-DAC with the linear additive quantization 
noise model 

 Model DAC as a filter with impulse response p(t) 
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Loop Modeling 

 Break the loop after the sampler 

 Apply a DT impulse  

 The sampled output is  

 The output sequence (lc[n]), should be identical to the DT 
loop-filter response  
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Synthesis of CT Loop-Filter 

 Map the sampled CT loop-response to its DT equivalent 
 Called Impulse Invariant Transformation (IIT) 

   

 

 NTF(z) is preserved in the DT-to-CT if the transformation is 
correctly performed 
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First-order Example – NRZ DAC 

 Without loss of generality, let fs=1 Hz, Ts=1 s 

 Sampled loop-response lc[n]={0,1,1,1,1,….} 
 Identical to the DT loop-response 
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First-order Example – RZ DAC 

 With RZ DAC, scaling by a factor of k1=2 is need to restore 
the loop-response 

 Can have any number of CT responses to result in the 
same DT loop-response 
 The procedure can be conceptually applied to any other DAC pulse 

shape 
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Second-order Example 

   

 

    

 

 l[n] = {0,1,1,…} + {0,1,2,3,…} = {0,2,3,4,5…}  

 The loop-response is implemented using a cascade of two 
CT integrators 
 Need to find suitable loop-filter coefficients k1 and k2 using IIT 
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Second-order Example 

 

 l[n] = {0,2,3,4,5…}  

 lc[n] = k1∙{0,1,1,1,…} + k2 ∙{0,1.5, 2.5, 3.5,…}  

 Solving for lc[n]= l[n]: k1=1.5 and k2=1 
 

 For NRZ DAC, CT loop-filter, 

 

 Show that for RZ DAC, k1=2.5 and k2=2 
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Impulse-Invariant Transformation 

 Impulse-invariant transformation maps DT modulator to CT 
   

 

   

 These relations have been derived for standard z-domain 
poles  
 Uses generic rectangular DAC pulse defined by (α, β), 0≤α<β ≤ 1 

 Tables available for z-domain to s-domain pole equivalence and 
vice versa [Cherry] 

 A DT pole a z=zk transforms to a CT pole at sk=ln(zk) with the same 
multiplicity (l) 
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z-Domain to s-Domain Loop Filter Poles 
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s-Domain to z-Domain Loop Filter Poles 
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IIT Example: 2nd-order NTF, RZ DAC 

 Expand L(z) as pole-form partial fractions 

   

 

 

 

 From the equivalence  tables  
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Continuous-Time ΔΣ Summary 

 A DT loop can be emulated using a CT loop-filter 

 The DT-to-CT transformation depends on the DAC pulse 
shape 

 The transformation can be performed using analytical as 
well as numerical methods 

 This technique can be extended to higher-order NTFs 
 From the desired NTF(z), find L(z) 

 Convert L(z) into L(s) using the DAC pulse shape 

 Schreier ΔΣ Toolbox function realizeNTF_ct  can be used for 
rectangular DAC pulses 

 Implement L(s) using a suitable loop-filter topology 

 A CT ΔΣ modulator has significant advantages over it’s DT 
implementation…. stay tuned 
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Loop-Filter Architectures 

Cascade of Integrators with Feedforward Summation (CIFF) 

 

 

Cascade of Integrators with Distributed Feedback (CIFB) 
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Resonators for Complex NTF Zeros 

 Complex NTF(z) zeroes,               transform into conjugate 
loop-filter poles at  

 Here,  
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CIFF Loop-Filter 

 Integrator unity-gain frequencies ω1> ω2 > ω3 

 First integrator is the fastest while the last is slowest 

 Since the first integrator needs to be fastest for noise and 
linearity considerations, results in lower power loop-filter 
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CIFB Loop-Filter 

 Integrator unity-gain frequencies ω1< ω2 < ω3 

 First integrator is the slowest while the last is fastest 

 Not power efficient compared to CIFF 
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Loop-Filter Time-Scaling 

 Changing the sampling rate for the normalized design from 
1Hz to fs 

 DAC pulse-shape stretches by Ts 

 loop-filter scales as 

 1 1s
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Implicit Anti-Aliasing in CT ΔΣ Modulators  

 Recall that the loop-filter may appear different to the input 
signal u(t), and the feedback signal, vc(t). 
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Implicit Anti-Aliasing in CT ΔΣ Modulators  

 Re-arrange the blocks 
 Recall that L1(s)=-L(s) due to the negative feedback inversion  
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Implicit Anti-Aliasing in CT ΔΣ Modulators  

 Move the sampler outside the loop 

 Apply impulse-invariant transformation on the feedback 
path 
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Implicit Anti-Aliasing in CT ΔΣ Modulators  

 Transfer function from r to v is given by 
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Implicit Anti-Aliasing in CT ΔΣ Modulators  

 The input signal is pre-filtered by a CT LPF, L0(s), before 
sampling 

 For an input tone at frequency fin in the signal band 

 Pre-filtered output before sampling is given by L0(fin)  

 Due to sampling, a tone at fs+fin can alias at fin  

 i.e. the first alias-band [fs-fB, fs+fB] 

 In CT ΔΣ, the alias tone is filtered by L0(fs+fin)  
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Implicit Anti-Aliasing in CT ΔΣ Modulators  

 Alias rejection is given by  

 

 Implicit anti-aliasing due to pre-filtering by L0 

 Explicit AAF can be eliminated! 
 Important distinguishing feature of CT ΔΣ 
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Implicit Anti-Aliasing in CT ΔΣ Modulators  

 

 Overall signal transfer function (STF) is given by 
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Implicit AAF – FF vs FB Loop-Filter 

 Feedforward loop-filter exhibits STF peaking 

 STF peaking due to zeroes in L0(s) 
 Zeros at higher frequency flatten | L0(jω)| response 

 For FB, L0(s) has all-pole form 
 Best STF performance (blocker rejection) 
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Excess Loop-Delay in CT ΔΣ 

 Real circuits blocks introduce excess-loop delays (ELD) 
 Quantizer requires finite regeneration time  

 ELD due to finite gain-bandwidth of opamps in the loop-filter 

 DEM/DWA logic in multi-bit ΔΣ adds finite delay 

 Finite DAC rise/fall time (relatively small) 

 Important concern in high-sampling rate ΔΣ converters 

 What effect does ELD have on the loop-response? 
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ELD – First-order Example 

 fs=1 Hz, ELD due to quantizer delay: 0<Td<1 

 First sample after unit delay is affected (1-Td) 

 Resulting DT equivalent loop-response  

 

1
1

1
( )

1
d

z
L z T z

z





 





     

 

© Vishal Saxena -34- IEEE MWSCAS   Aug 5, 2012 

ELD – First-order Example 

 fs=1 Hz 

 Sampled loop-response is delayed due to the finite gain-
bandwidth of the opamp 

 First sample after unit delay is affected (1-Td) 
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Excess Loop-Delay in CT ΔΣ 

 NTF with ELD 
 

 Order of the loop is increased  due to the extra delay 

 Loop gets unstable at Td=1 

 NTF peaking as Td increases, leading to modulator becoming more 
sensitive and prone to instability 
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ELD Compensation– Basic Idea 

 Add a direct path (k0)  around the quantizer to provide the 
first sample l[1] 

 Here, k0=Td  restores L(z)  
 modulator NTF(z) is restored! 

 Several other solutions are possible to restore L(z) 
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ELD Compensation 

 Normalized ELD due to quantizer delay = Td/Ts=τ 

 A direct path around the quantizer (k0) is used to restore 
the DT loop-response L(z)  

 Approach valid for higher-order modulators 
 For order>1, L(s) is also modified (requires coefficient tuning) 

 Schreier’s ΔΣ Toolbox function realizeNTF_ct  
 can synthesize CT loop-filters with ELD<1 and rectangular DAC 

pulse response. 
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ELD Compensation 

 For nth order modulator, the loop-filter coefficients also 
need to be tuned. For NRZ DAC: 

 

 

 

 

 Coefficient tuning is better done numerically. 
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ELD Comp. using DT Differentiator 

 Proportional path = CT integrator + DT differentiator 

 Avoids the extra summer at the expense of a register 

 Scaling factor 

 

 Other variations include 
 Using a (1-z-0.5) differentiator, 

 Can tap first integrator output and perform CT differentiation  
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ELD Comp. using a PI-Element 

 Combine the two inner loops into a single PI-element 

 Note that kb affects other inner loops too 
 Other coefficients need to be tuned accordingly 

 Can aggravate STF peaking due to additional zero 
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Effect of RC Variation 

 CT-ΔΣ loop-filter coefficients ki are implemented as 1/RC 
(or gm/C ) 

 The RC time-constants can vary with process and 
temperature by 
 ±1% on a single die 

 ±20% with from die-to-die 

 DT-ΔΣ employs implements ki using ratio of capacitors 
 Much tightly controlled on-chip and hence accurate 

 What is the impact of RC time-constant variation on CT-ΔΣ 
modulator performance? 



     

 

© Vishal Saxena -42- IEEE MWSCAS   Aug 5, 2012 

RC Time-Constant Variation 

 With an increase in RC time-constant  
 Coefficients ki decrease (↓) 

 Loop-filter bandwidth ↓ 

 In-band loop-gain ↓ 

 NTF OBG ↓ 

 In-band quantization noise ↑ 

 Maximum stable amplitude (MSA) ↑ 

 “More” stable but degraded NTF 

  performance 

 Slower design 
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RC Time-Constant Variation 

 With a decrease in RC time-constant  
 Coefficients ki increase (↑) 

 Loop-filter bandwidth ↑ 

 In-band loop-gain ↑ 

 NTF OBG ↑ 

 In-band quantization noise ↓ 

 Maximum stable amplitude (MSA) ↓ 

 “Less” stable but more aggressive  

 NTF performance 

 Faster design 
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RC Time-Constant Variation 

 Maximally flat 3rd-order NTF with nominal OBG=3 
 Modulators with ±30% RC variation 
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RC Time-Constant Variation 

 Maximally flat 3rd-order NTF with nominal OBG=3, nLev=23 

 Modulators with ±30% RC variation 
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Clock Jitter in DT-ΔΣ 

 DT-ΔΣ the input is sampled before the modulator loop 

 Assume white clock jitter with RMS value σj  

 RMS jitter noise in the signal band: 

 

 Clock jitter limited SNR: 
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Clock Jitter in CT ΔΣ 

 The input signal is sampled inside the modulator loop 

 Clock jitter affects both ADC decisions as well as the DAC 
output 
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Real Quantizer with Jittery Clock 

 ADC samples and quantizes CT input yc digital output v[n] 
 ADC regeneration time - Td 

 DAC reconstructs samples of v[n] into CT output – vc 

 DAC is clocked with a delay to capture the ADC output 

 Both ADC and DAC clocks have jitter 
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ADC Sampling Jitter 

 ADC sampling jitter is modeled as AWGN 

 Noise due to sampling jitter is shaped by the loop (NTF) 
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DAC Reconstruction Jitter 

 DAC  reconstruction error (ej2) follows the DAC 

 Directly adds to the input 

 Major contributor of jitter induced noise 
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DAC Output Waveforms 
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Jitter Induced DAC Error- NRZ 

 Error depends on the transition height v[n]-v[n-1] 
 Granularity of LSB size  

 Multi-bit NRZ DACs have lower jitter induced error 
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Jitter Induced DAC Error- RZ 

 Error depends on twice the pulse height 2v[n] 
 Two transitions per time period  

 RZ DACs are much more sensitive to clock jitter 
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Jitter Noise with NRZ DAC 

 Error due to jitter 

 

 

 Modulator output variance (neglecting slowly varying input) 

 

 

 

  In-band jitter noise 
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 NTF behavior at higher frequencies determines most of J 
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SCR DAC for Lower Jitter Noise 

 Use sloping DACs to reduce the error due to jitter 

 Switched-cap resistor DAC (SCR), cosine-shape, etc.  

 More stringent requirements on the opamp performance 
 Possible linearity and AAF degradation 
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CT ΔΣ Implementation 
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 CT Integrators used as the loop-filter stages 
 Active-RC, Gm-C, Active Gm-C, Active-MOS-C, Current-mode 

integrators, log-domain integrators 

 Active-passive Hybrid stages can alternate 
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CT ΔΣ Implementation 

Active-RC Gm-C 

Linearity p r 

Power consumption r p 

Frequency range r p 

Tunability r p 

Dynamic Range p r 

Voltage headroom p r 

Parasitic Sensitivity p r 
Realization of FF Summation r p 

 Overall Active-RC preferred for superior dynamic range in CT ΔΣ 

designs 

 Active-RC with two- or higher stage opamp for better linearity 
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Loop-filter Coefficient Tuning 
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Loop-filter Coefficient Tuning 

• Loop-filter coefficients are typically determined using the Schreier's ΔΣ 

Toolbox  

• using impulse-invariance transformation tables is unwieldy for higher-

order modulators and with ELD 

 
 

 

 

 

 

 

 

 

 

 

 
• Solved using LMS data fitting for N samples (pseudo-inverse) 
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Problems with Coefficient Tuning 

• Practical integrators are implemented using opamps  

• finite opamp gain (AOL) and unity-gain bandwidth (fun), and with extra 

poles and zeros. 

• The excess loop-delay due to finite fun  causes significant amount of 

gain peaking in the resulting NTF. 

• Coefficient tuning yields different results depending on the number of 

samples used for LMS fitting. 

• tuning is numerically unstable  

• higher OBG leads to instability in the modulator 
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Systematic Design Centering 

• Instead of fitting the open-loop response, fit NTF(z)(1+L(z))  to 1  
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Systematic Design Centering 

• The loop-filter coefficients are 

tuned to compensate for the 

excess loop delay due to the op-

amps and the quantizer delay 

 

• NTF response with non-ideal 

integrators is close to the ideal 

NTF 

 

• The NTFs are indistinguishable for 

any value of N=5,20,50  

 

• Coefficient tuning is numerically 
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Feedback DAC Architecture 

 Array of unit-weighted current steering DACs to pull and 
push current from the opamp current summing node 

 Use high crossover pre-drivers to reduce DAC glitching 
noise 

 

 

 

 

DACim DACip

v
u

b0ILSB

Loop-Filter

b1ILSB
bN-1ILSB

Thermometer coded v



     

 

© Vishal Saxena -64- IEEE MWSCAS   Aug 5, 2012 

Feedback DAC Nonlinearity 

 In a multibit DAC, element mismatch leads to non-
linearity 
 v is related to the input (u) by inverse non-linearity of the DAC 

 A single-bit DAC is always linear 
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Feedback DAC Nonlinearity 

 Leads to distortion  

 intermodulation of quantization noise into the signal 
band 
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Dynamic Element Matching (DEM) 

 Randomize the DAC elements 

 Distortion components 
converted to noise 

 Increased noise floor 
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Data Weighted Averaging (DWA) 

 Cycle through all the current elements 
as fast as possible 

 Accumulate the input code and move the 
pointer 

 First-order mismatch noise shaping 
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Data Weighted Averaging (DWA) 

 Barrel shifter delay in the signal path increases loop delay 

 Not viable at higher sampling rates (>400 MHz) 
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DAC Calibration 

 Digital calibration – estimate element error and subtract from the 
output 
• Increased Decimation filter complexity 

 Analog calibration – calibrate the elements with respect to a master 
• Need to calibrate at every cycle 
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CT ΔΣ Advantages Summary 

 Lower-power implementation 
 Relaxed bandwidth requirements for the integrators 

 Inherent Anti-aliasing filtering (AAF) 
 Eliminates/relaxes input filtering 

 Fixed resistive input impedance 

 Higher sampling-rates extending to GHz-range 
 Suitable for RF integration 

 Reduces supply and ground noise impact 

 Less complicated clocking (compared to DT) 
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CT ΔΣ Challenges Summary 

 Complicated design due to hybrid CT-DT modeling 

 Design doesn’t scale with clock frequency 
 Loop-filter coefficient  tuning for clock frequency migration 

 High sensitivity to clock jitter (DAC reconstruction error) 

 Excess loop-delay sensitivity 

 Tuning required for RC time-constant variation 

 Sensitive to DAC pulse shape, rise/fall time at high-speeds 

 Comparator metastability at high speeds 

 Higher-level simulation is challenging compared to DT 

 Cascaded (MASH) designs are difficult due design 
complexity and mismatch in analog and digital transfer 
functions 
 Background calibration techniques 
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Design Tools 

 MATLAB and Simulink 
 Dr. Richard Schreier’s ΔΣ Toolbox 

 SIMSIDES Toolbox from Dr. Jose de la Rosa at University of Seville, 
Spain (Available under NDA) 

 Verilog-A/AMS behavioral modeling in Cadence/Spectre 
 Config view in Virtuoso comes in handy for simulations 

 Spectre Simulink Co-simulation Toolkit 

 Berkeley Design Automation FastSpice for full-chip sims 

 Synopsis tools for digital logic simulation and synthesis  

 Mentor Graphics Calibre for DRC/LVS/Extraction 

 

Use top-down design methodology with carefully thought mixed 
block-level simulations 
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