Project 2

ECE 615 - Mixed Signal IC Design

1 Problem Statement

Switched-Capacitor Design of an Audio ADC: This project involves *realistic* design process for a $\Delta\Sigma$ ADC intended for audio recording devices. The design is to be implemented using a 180-nm mixed-mode CMOS process with a $V_{DD} = 1.8 V$ supply voltage. The target specifications for the single-loop multi-bit audio $\Delta\Sigma$ modulator are as follows:

Parameter	Specified Value
Supply voltage, V_{DD}	1.8 V
Input signal bandwidth (f_B)	24 KHz
Resolution	≥ 18 bits
Minimum Full-Scale (FS) input voltage	$0.6 \cdot V_{DD}$
Output sample rate (after decimation)	48 KHz
Maximum clock speed (f_{CLK})	$12.5 \mathrm{~MHz}$
Quantizer Range (fully-differential)	$3 \mathrm{V}_{\mathrm{pp,diff}}$

Table 1: $\Delta \Sigma$ ADC design specifications.

For details on noise calculations in audio conversion systems refer to [2].

2 $\Delta \Sigma$ Modulator Circuit Design

The following steps will guide you through the design and documentation process (Also refer to the design example in Chapter 9 of the textbook).

- 1. Switched-Capacitor Design: Translate the designed loop-filter in Project 1 to a switched-capacitor topology. The opamps and comparator are behavioral while the transistor-level switches are recommended.
 - (a) Determine the required clock timing for the switches from the loop-filter difference equations.
 - (b) Use thermal noise analysis for the modulator and obtain the base capacitor value set by the kT/C noise with appropriate noise budgeting[3]. Select optimal switch sizing to minimize thermal noise and determine all the capacitor values required to implement the range-scaled loop-filter.
 - (c) Use a simple behavioral model for the op-amp. Your opamp behavioral model should at least capture the unity-gain frequency (f_{un}) and finite DC gain (A_{OL}) . Also, use a verilog-A model of the comparator/quantizer.
 - (d) Neatly create the loop-filter schematic in Cadence Virtuoso using the behavioral models. Make use of the config view to switch between different schematic cell views. You may use

ideal non-overlapping clock phases (ϕ_1 and ϕ_2) with realistic rise and fall times. In this project, assume that the feedback DAC capacitors have no mismatch (no DEM/DWA in this design).

2. Ideal Schematic Simulation:

- (a) Simulate the ideal switched-capacitor loop-filter (i.e. using ideal opamps) and compare its impulse response with the one simulated using MATLAB.
- (b) Next, close the loop around the loop-filter and the quantizer and thus forming the modulator. Find the MSA using the slow-ramp input method and plot the results.
- (c) By appropriately choosing an sinusoidal input frequency (i.e. $f_{in} = \frac{m}{N_{FFT}} f_s$), simulate the modulator schematic with an amplitude of 0.9 *MSA*. Plot the resulting modulator PSD with a 1024-point Hann window and compare the in-band SQNR with the results in part (3).
- (d) Plot the waveforms at the output of each integrator (loop-filter states) and show that they don't go beyond the linear range (i.e. $1.5 \text{ V}_{\text{pp,diff}}$).

3. Schematic Simulation with Circuit Non-idealities:

Discuss how will you optimize the overall power consumption of the designed modulator when implemented in the selected CMOS process. Set the appropriate values for your op-amp models $(f_{un}, A_{OL}, \text{etc.})$. Make sure the 'golden' integrator in the loop-filter is appropriately designed. Repeat step (5) with this design model.

PS: You may additionally model other circuit non-idealities like opamp saturation, slewing, switch non-linearity, clock jitter, quantizer non-idealities, etc., but is not required. A behavioral simulation model like **SIMSIDES** is usually used to verify system level performance of these designs [6].

3 Project Report

Submit your neatly typed report in a two-column IEEE transactions format [7]. Show neatly drawn schematics and block diagrams. You may download the Visio schematic symbols from the course website [8]. Provide relevant references in your report. Show the modulator overall ADC performance (peak SNR/SNDR, dynamic range, etc.) in a neatly tabulated manner along with the conclusion.

References

- A 24-bit, 192 kHz Multi-bit Audio ADC: CS5430 Datasheet, Wesbite, Cirrus Logic, 2008.
- [2] Audio Conversion Systems Noise Calculations and Requirements, App. note AN263, Cirrus Logic, 2008.
- [3] R. Schreier, J. Silva, J. Steensgaard, G. C. Temes, "Design-Oriented Estimation of Thermal Noise in Switched-Capacitor Circuits," *IEEE TCAS-I*, vol. 52, no. 11, pp. 2358-2368, Nov. 2005.
- [4] K. Kundert, "Simulating Switched-Capacitor Filters with SpectreRF," *Designer's Guide Community* [Online].
- [5] K. Kundert, "Device Noise Simulation of Delta-Sigma Modulators," *Designer's Guide Community* [Online].
- [6] SIMSIDES, SIMulink-based SIgma-DElta Simulator," University of Seville. Available [Online].
- [7] IEEE Transactions Templates. Available [Online].
- [8] Visio Schematic Symbols. Available [Online].