

ECE615 Mixed-Signal IC Design

Lecture 1 Slides

Vishal Saxena, Boise State University (vishalsaxena@boisestate.edu)

Mixed Signal IC Laboratory Boise State University

Aug 27, 2013 © Vishal Saxena -1-

Course Outline

Instructor: Vishal Saxena

Time : Tuesday and Thursday, 4:30 to 5:45 PM

Course dates: Tuesday, August 27 to Thursday, Dec 12

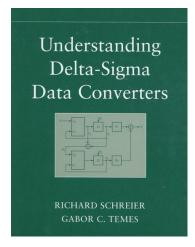
Location : MEC 309

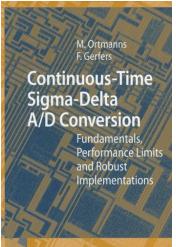
Holidays : Nov 26 & 28, Thanksgiving break.

E-mail : vishalsaxena@u.boisestate.edu

Website : http://lumerink.com/courses/ECE615/f13/ECE615.htm

Course Topics

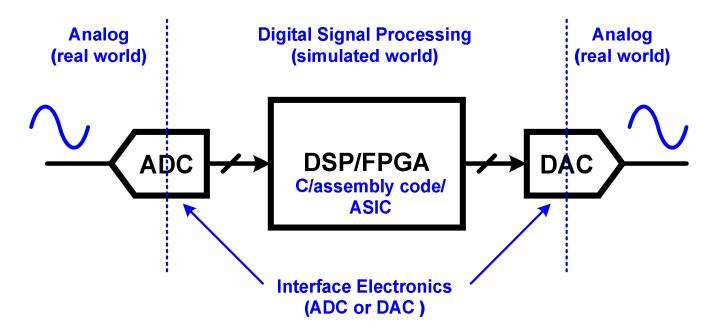

- Data Conversion and spectral estimation fundamentals
- Delta-Sigma modulator (DSM) architectures, decimation filters
- Discrete-time DSM design
 - System level design, noise budgeting, circuit optimization.
- Continuous-time (CT) DSM design
 - Effects of excess-loop delay and clock jitter in CT-DSMs
 - Tuning techniques for CT-DSMs.
- Flash ADCs and DACs employed in the CT-DSMs
- Bandpass and Complex DSMs.
- DAC mismatch error shaping


Prerequisites

- □ Analog IC Design (ECE 511)
 - Op-amps, biasing, small-signal analysis.
- Digital Signal Processing
 - Fourier, DTFT, Laplace, z-transforms, poles and zeros.
- Basic knowledge of circuit simulation using Spice/Spectre and Matlab scripting.
- Circuit details are covered in ECE 614

Textbook and References

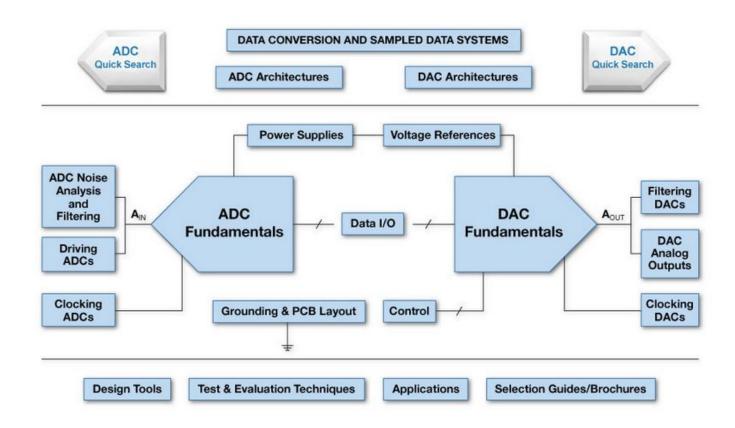
- Understanding Delta-Sigma
 Converters Richard Schreier and
 Gabor Temes, Wiley-IEEE Press,
 2005.
 - CT Sigma-Delta ADC Ortmanns
- Matlab Delta-Sigma Toolbox by R.
 Schreier available for download <u>online</u>. The toolbox manual is here.
- □ The complete reference list for deltasigma modulators is available <u>here</u>.



Course Pedagogy, Grading and Policies

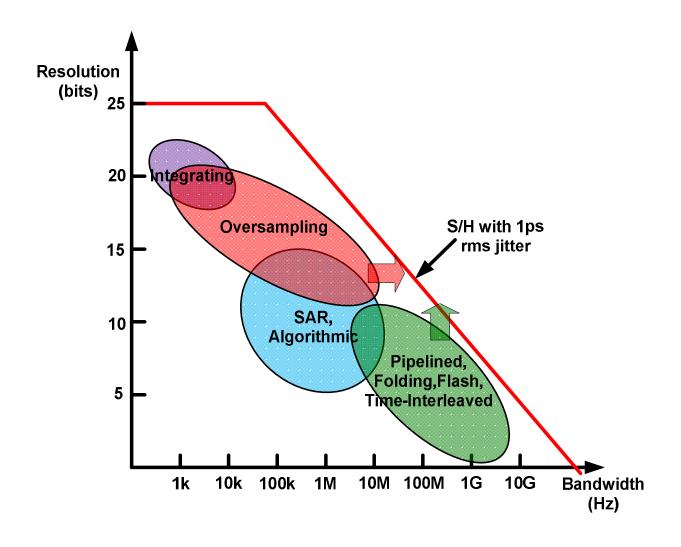
- Combination of lecture notes, slides and simulation
 - Lecture notes will be posted online
 - Additional slides, Matlab code etc will also be posted.
- Workload (Grading)
 - Homeworks (25%): Weekly assignments combining Matlab and Spectre based design and simulation.
 - Midterm Exam (25%)
 - Project 1 (25%): Switched-capacitor delta-sigma modulator design.
 - Project 2 (25%): Continuous-time delta-sigma modulator design.
- Policies
 - Maximize learning!
 - No plagiarism, late work and net surfing in class.

Data Converters

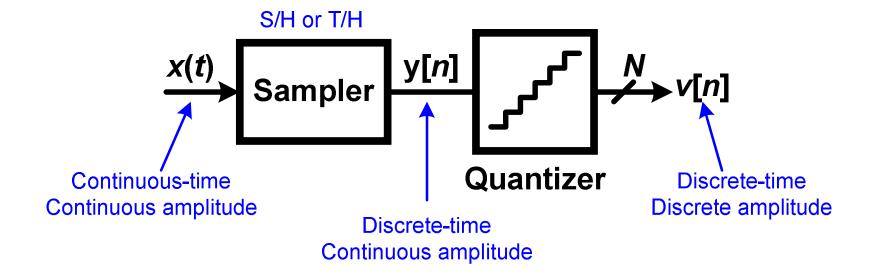


- □ Real world: Continuous-time, continuous-amplitude signals.
- Digital world: Discrete-time, discrete-amplitude signal representation.
- Interface circuits: ADC and DACs.
 - Varying speed and precision requirements.

Data Conversion Scenarios


- Any application using a sensor and/or an actuator
 - Wireless: RF Rx and Tx chain
 - Twisted pair: ADSL modem
 - Coaxial: Cable modem
 - Serial/Optical links: 10G+ ADC for modulation and equalization
 - Audio Recording: 24-bit stereo ADCs
 - Audio players: stored data to speaker (audio DAC)
 - HDD read channel: Magnetic disk to microprocessor
 - Biomedical applications (e.g. sensing blood glucose level and actuating the insulin pump),.....
- Speed and resolution requirements vary with the application.

Data Converters


http://www.analog.com/en/data-conversion-knowledge-resource/conversions/index.html

Analog to Digital Converter Architectures

Analog-to-Digital Converter (ADC)

Sampling Process

Refer to lecture notes.