ECE 614 - Lecture 4

* Resistive averaging CM-detector
* dual diff-pair based CM-detector
Two-stage FD opamp

Two options:
1. We use a single point of control
2. Two separate CMFB loops for each of the nodes
\[V_{\text{ref1}} = ?? \]

\[\text{Dual Diff-pair} \]

\[\Rightarrow V_{\text{ref1}} \text{ biases the 2nd gain stage} \]

\[\Rightarrow V_{\text{bias2}} \]

\[\Rightarrow \text{Size CMFB1 s.t. there is no systematic offset.} \]
Control M6, M8 s.t. the current is equal to \(I_{M5} \) & \(I_{M7} \).
Single-loop CMFB:

\[V_{\text{cmfb}} \]

feedback loop adjusts DC level here

\[I_{f/2} \]

\[V_{op} \]

\[V_{cm/\text{out}} \]
CM picture

VcmFB

x 3 low-frequency poles

L, complex compensation

x How to get rid of this 3-pole situation

Kill the gain of this core Amp?
\[g_c = \frac{1}{2} \left(\frac{g_{m1}}{g_{m3}} \right) \leq -1 \]

- Can use the differential path \(C_c \) for compensating the CMFB loop itself.