Offset Cancellation Techniques

\[V_{os} = \Delta V_{THN} + \frac{1}{2} V_{os} \cdot \frac{\Delta (W/L)}{W/L} \]

To reduce \(V_{os} \),

\[\text{Area} \sqrt{WL} \]

\[\Rightarrow \text{Area} \sqrt{WL} \]

\(\Rightarrow \) may degrade speed

\(\Rightarrow \) high power consumption
Need to electronically cancel offset

\[V_{os} \]

\[\begin{align*}
V_{os} & \quad C \\
O & \quad + \\
- & \quad - \\
\end{align*} \]

\[\begin{align*}
A \quad X \\
- & \quad C
\end{align*} \]

when all the voltages are settled, \(AvV_{os} \) is stored on the capacity

\[\begin{align*}
C & \quad + \quad A_vV_{os}
\end{align*} \]

\[\begin{align*}
C & \quad - \quad A_vV_{os}
\end{align*} \]
But, for large $|A|$, the circuit can saturate

$|A| \leq 10$

- Need to size the offset at the input side
\[|Av| \text{ is large} \implies |Av| \gg 1 \]

\[
V_{\text{out}} = V_{xy}
\]

\[
(V_{\text{out}} - V_{os}) (-Av) = V_{out}
\]

\[
\implies V_{\text{out}} = \frac{Av}{1+Av} V_{os}
\]
Input offset storage and cancellation

\[
\frac{AV}{1+AV}V_{os} - V_{os} = V_{os} \left[\frac{AV}{1+AV} \right]
\]

\[
= -\frac{V_{os}}{HA} = -\frac{V_{os}}{A}
\]

Output referred offset is \(\frac{V_{os}}{A} \) not zero!
Regenerative Comparator

\[\text{Vin} \rightarrow \text{+} \rightarrow \text{Vout} \]
\[\text{Vref} \rightarrow \text{-} \rightarrow \text{Vout} \]

\[\text{If } \text{Vin} > \text{Vref } \Rightarrow \text{Vout=V}_{DD} \]
\[\text{else }, \text{Vout = 0.} \]

- high input resolution \(\Rightarrow \) \(\pm 1\mu V \Rightarrow \text{high gain} \)
- high speed operation \(\Rightarrow \) \(\text{high speed} \)

\[\text{Ideal} \]
\[\text{gain: } A_v \]
\[\text{BW: } \infty \]

\[\Rightarrow \text{Cascade several stages to get large gain} \]

\[n \text{ stages} \]
\[\text{gain} = A_v^n \]
\[\frac{A_v^n}{(1+j\omega t_f)^n} \]
Idea 2: Use positive feedback

Let's say we want to compare V_{in} with $V_{out} = 0$.

Input sampled on the capacitor C

V_{in}
\[\begin{array}{c}
\text{+} \\
\text{C} \\
\text{-}
\end{array} \\ V_C \]

* Add more charge if $V_{in} > 0$

* Inject current into C

* V_C will reach ∞

* Conversely, stop current from C

V_C will decrease to $-\infty$
$i_c = C \frac{dv_c}{dt} = g \cdot v_c$

$v_c(t) = v_o e^{\frac{t}{\tau}}$

Initial value is v_o

@ $t = 0$, $v_c = v_o$

@ $t \to \infty$

$v_c \to \infty$ for $v_o > 0$

$v_c \to -\infty$ for $v_o < 0$

Time constant $\tau = C/G$

Pole in the RHP

\Rightarrow will eventually hit the rails
\[T_c = \frac{C}{G} \Rightarrow \text{regenerative time constant} \]

minimum resolvable voltage \(< \frac{V_{DD}}{e^{T/A/C}} \), \(T \) is the settling time
Differential Signals:

\[V_{in} + \Delta V \]

\[V_{in} - \Delta V \]

Compare the two inputs and figure out if the difference is the or-re.

\(\Delta V \) is the initial signal.

Differential transconductor
High gain around the Vsp

differential g_m
Initial signal

redraw