Using FFT in Cadence Spectre

First, you need to determine your input frequency based on the sampling rate and the number of samples to ensure **coherent sampling**. For example, the sampling rate is f_s =100MHz and the number of samples (of number of FFT bins) is N_{FFT}=2^6=64. If we want the input frequency (f_{in}) is around 10MHz, the input frequency required for coherent sampling is given by:

1) Calculate
$$\frac{f_{in,nom}}{f_s} \times N_{FFT} = \frac{10}{100} \times 2^6 = 6.4$$

2) Find the closest prime number to
$$\left| \frac{\mathbf{f}_{in,nom}}{\mathbf{f}_s} \times \mathbf{N}_{FFT} \right|$$
, that is 7.

3) Then the actual input frequency is
$$\frac{7}{N_{FFT}} \times f_s = 10.9375 \text{MHz}$$

and the input bin is $f_{\text{bin}} = 7$.

In this example, the output of a residue amplifier needs to be analyzed. The RA generates 2X gain for a 1.5 bit pipeline stage.

First we set the input frequency to be 7/64*100MHz.

	Browse	Reset Instanc	e Labels Di	splay	
	Property		Value		Di
	Library Name	analogLib			of
	Cell Name	vsinį	2		of
	View Name	symbol			of
	Instance Name	¥2			of
<i>C</i> 1		Add	Delete	Modify	
Change All	User Property	Master Value	e L	ocal Value	Di
	lvsignore	TRUE	Ĭ.		of
	CDF Parameter		Value		Di
AC magi	nitude	Ĭ			of
AC phas	e	Ĭ			of
DC volta	age	Ĭ.			of
Offset v	voltage	Offset V			of
Amplitud	le	Amplitude	¥.		of
Frequen	су	7/64*100M			of

Since the SC CMFB settles in around 200 ns and we need 64 samples in total for FFT calculation, the stop time for transient simulation is set to be 200ns+64*10ns = 840ns. After simulation is finished, we could check the common mode output voltage.

In this simulation, the non-overlapping time between phase 1 and phase 2 is 500ps. Phase 2 always ends at (n*10+9.75) ns, so the first sample is at 209.75 ns. We could use **value**() function to sample the residue amplifier output.

D	Calculator _ 🗆 ×						
Window Tools Memories Con	ist Options Help						
/net/eeuss1/export/userproj/yx	z105420/simulation/RAMP/spectre/schematic/psf						
Selection choices							
Clip graph selection	tran ac dc swept_dc info noise rf						
off family wave	vt 🖲 it 🔾						
VT('/vop')-VT('/von')	•						
Append 🔻 📈 III	value						
Clear Undo Eval	Signal VT("/vop")-VT("/von")						
1/x eex Clst Enter	Interpolate At 209.75n						
+ 7 8 9	Number of occurrences multiple •						
- 4 5 6	Period (required for multiple) 10n						
x 1 2 3	Plot/print vs. time 💌						
	< Ok Cancel Apply Defaults >>>						
>	Cadence						

Generate table from data.

D	*				Calculator		×
Window	/ Tools	Memo	ories Co	nst Op	tions Help		
/net/ee	uss1/ex	port/us	erproj/y>	cz1054 2	0/simulation/RAMP/	spectre/schematic/ps	f
-Selectio	on choice						
-		-					
₽ cli	p graph	selectio	on	tran	ac dc swept_dc	info noise rf	
off	famil				\cap		
0110	Tairii	у — ч	wave	vi e n	.0		
value(V	T("/vop")-VT("/\	/on') 209	.75n ?p	eriod 10n ?xName "ti	me")	-
			_				
Appen	nd 🔻				rmsNoise	slewRate	xmax
01-01-00					rn	spectralPower	xmin
Clear	Un	ao	LVal		r000	sqri	XVAI
1/2	0.02	Clst	Enter	n	s11 s17	stiddev	y x Vmax
1/1	EEA	CISC	Citter	11	\$71	tan	vmin
+	7	8	9		s22	tangent	<i>y</i>
-	4	5	6		sample	tanh	
		-			settlingTime	thd	
x	1	2	3		sin	value	
1	0		+/-		sinh	x**2	
		•		•		30000000	
				Filtor			-
				rnter	*		
~							cadence
							leanene

valuerVT	T r '/von'	<u>אדריי</u>	ע ניטע	9.75n i	2 neriod 10n 2xNar	ne "time")	
		,,	, 20			, , , , , , , , , , , , , , , , , , ,	
Annend 🔻 🕅 📖					rmsNoise	slewRate	xmax
					rn	spectralPower	xmin
Clear	Ur	ndo	Eval		root	sqrt	xval
					s11	ssb	V**X
1/X	eex	Clst	Enter	n	s12	stddev	ymax
	7	0	0		s2 1	tan	ymin
+		0	9		s22	tangent	
-	4	5	6		sample	tanh	
					settlingTime	e <u>thd</u>	
x	1	2	5		sin	🗊 🛛 Calculator Resu	lts Display 💷 🗆
1	0		+/-		sinh		
Filter All						Data 🖲 Value	⊖ Point ⊖ Range
						X Intercept	
						Canat / End	
						Start/Enu	
	· .	<u>.</u>				Step/Scale	
			ļļ			ОК Арр	ly Cancel

Save the data table as csv file: samples.csv.

	244	000	
	Table		>
; <u>H</u> elp			
lue((VT('/vo			
1.690			
1.390			
0.4463			
-0.7055			
-1.528			
-1.653			
-1.045			
0.05375			
1.127			
1.672			
1.479			
0.6064			
-0.5491			
-1.449			
-1.680			
-1.172			
-0.1146			
0.9960			
1.640			
1.552			
0.7604			
-0.3872			
-1.354			
-1.692			
-1.287			l l
-0.2818			
🛃 💶 All (no fi	iter)	-	
4 4 U			
	Help I.690 1.690 1.390 0.4463 -0.7055 -1.528 -1.653 -1.045 0.05375 1.127 1.672 1.479 0.6064 -0.5491 -1.449 -1.680 -1.172 -0.1146 0.9960 1.640 1.552 0.7604 -0.3872 -1.354 -1.692 -1.287 -0.2818	Help 1.690 1.390 0.4463 -0.7055 -1.528 -1.653 -1.045 0.05375 1.127 1.672 1.479 0.6064 -0.5491 -1.480 -1.172 -0.1146 0.9960 1.640 1.552 0.7604 -0.3872 -1.287 -0.2818	Help 1.690 1.390 0.4463 -0.7055 -1.528 -1.653 -1.045 0.05375 1.127 1.672 1.479 0.6064 -0.5491 -1.449 -1.680 -1.172 -0.1146 0.9960 1.640 1.552 0.7604 -0.3872 -1.354 -1.692 -1.287 -0.2818

Then we use MATLAB on the exorted csv file to calculate FFT result of sampled RA output.

1) Use csvread to import data

```
>> data=csvread('samples.csv',1,1);
>> data
data =
    1.6898e+000
    1.3900e+000
    4.4641e-001
    -7.0572e-001
    -1.5274e+000
```

Make sure you have 64 samples in total. If you have more samples in you csv file, you should truncate them.

2) Then run prettyFFT on imported data. You could get

(required)

'f_S' is the SAMPLING rate (i.e. f_Nyquist * 2) (optional, default = 1) 'maxh' is the highest harmonic plotted, 0 means all harmonics (optional, default = 12) NOTE: lowering this value will affect SNR since SNR is calculated as SNDR with harmonics removed. Setting maxh to 1 will effectivly set SNR = SNDR. (1 means only the fundamental is a 'harmonic') 'no_annotation' set to anything but 0 to turn off annotation (optional, default = 0) 'no_plot' set to anything but 0 to not create a plot (optional, default = 0) 'baseline' is the minimum value on the y-axis. When set to '0' the y-axis is auto-scaled such that some of the noise floor is displayed. It is useful to set this parameter when comparing two FFT plots by keeping the scale the same.

(optional, default = 0)