MOS-AK workshop 13 Dec. 2008 <u>Sizing CMOS circuits by means of the g_m/I_D </u> methodology and a compact model. P.G.A. Jespers Université Catholique de Louvain paul.jespers@uclouvain.be

MOS-AK workshop, Dec 13, 2008. P.G.A. Jespers

1

```
sizing....
```

find D.C. currents and transistor sizes meeting :

- a prescribed gain-bandwidth product
- minimal power consumption
- minimal area
- large gain

low-voltage, low-power MOS circuits

Sizing...

- the Intrinsic Gain Stage (I.G.S.)
 - g_m/I_D semi-empirical methodology g_m/I_D compact model methodology L-V, L-P, short channel I.G.S.
- the Miller Op. Amp.

Sizing...

the Intrinsic Gain Stage (I.G.S.)
 g_m/l_D semi-empirical methodology
 g_m/l_D compact model methodology
 L-V, L-P, short channel I.G.S.

• the Miller Op. Amp.

why g_m/I_D ?

- g_m/I_D does not depend on the transistor width g_m and I_D are proportional to W
- g_m/I_D bridges a small signal and a large signal quantity

$$g_m \Leftrightarrow I_D$$

• g_m/I_D controls gain, power consumption ...

$$A = \frac{g_m}{I_D} V_A$$

Sizing...

 the Intrinsic Gain Stage (I.G.S.) g_m/l_D semi-empirical methodology g_m/l_D compact model methodology L-V, L-P, short channel I.G.S.

• the Miller Op. Amp.

The ACM and EKV compact models

- + continuous model (saturation, weak to strong inversion)
- + few parameters:
 - n subthreshold slope factor
 - *I_{Su}* unary specific current
 - V_{To} threshold voltage
- uniformly doped substrate, no mobility degradation,
- gradual channel approximation (1D)

A.C.M.

 An MOS transistor model for analog circuit design Ana I. Cunha, M.C. Schneider, C. G. Montoro. IEEE JSSC,vol 33,n°10,oct, 1998.

E.K.V.

- An analytical MOS transistor model valid in all regions of operation and dedicated to Low-Voltage and Low-current applications.

Chr. C.Enz, F. Krummenacher, E. A. Vittoz.

Analog Integrated Circuits and Signal Processing, Kluwer Ac. Publ. 1995.

<u>example</u> : $I_{Du}(V_G)$ of grounded source ($V_S = 0$ V) saturated ($q \Rightarrow q_F$) transistor parametric method

$$q_F \begin{cases} i = q_F^2 + q_F \\ V_P = U_T \left(2(q_F - 1) + \log q_F \right) \implies V_G = nV_P + V_{To} \end{cases}$$

% data UT = .026; n = 1.2; Isu = 1e-6; VTo = 0.4;

% compute qF = logspace(-4,1.2,50); i = qF.^2 + qF; ID = i*Isu; VP = UT*(2*(qF-1) + log(qF)); VG = n*VP + VTo;

% plot semilogy(VG,ID); grid

 g_m/I_D of the saturated transistor

$$\frac{g_m}{I_D} = \frac{d\log(i)}{dV_G} \qquad \begin{cases} d\log(i) = \frac{di}{i} = \frac{2q_F + 1}{i} dq_F \\ and \\ dV_G = n \, dV_P = n U_T \left(2 + \frac{1}{q_F}\right) dq_F = n U_T \frac{2q_F + 1}{q_F} dq_F \\ \frac{g_m}{I_D} = \frac{1}{n U_T} \frac{q_F}{i} = \frac{1}{n U_T} \frac{1}{q_F + 1} \end{cases}$$

- The basic EKV / ACM model does not apply to short channel devices!
- Real $I_D(V_{GS})$ characteristics however look very similar.

- The spatial distribution of electrical fields in the substrate boils down to a 2D problem controlled mainly by L, V_{SB}, V_{DS}, little by V_{GS}.
- The inversion layer confines to a 1D problem controlled by V_{GS} and L, V_{SB} , V_{DS} .
- Is it possible to model $I_D(V_G)$ characteristics by means of the EKV / ACM model with parameters that are functions of L, V_S and V_D ?

Sizing...

 the Intrinsic Gain Stage (I.G.S.) g_m/I_D semi-empirical methodology g_m/I_D compact model methodology L-V, L-P, short channel I.G.S.

• the Miller Op. Amp.

Sizing...

- the Intrinsic Gain Stage (I.G.S.) g_m/I_D semi-empirical methodology g_m/I_D compact model methodology L-V, L-P, short channel I.G.S.
- the Miller Op. Amp.

$$I_{Du4} = I_{Du5}$$

$$\left(\frac{W}{L}\right)_{4} = \frac{I_{D2}}{I_{Du4}}$$
$$\left(\frac{W}{L}\right)_{5} = \frac{2I_{D1}}{I_{Du4}}$$

4) Estimate C₁, C₂, C₃ and compute C_m

Choose ...

- L₁ medium (voltage gain)
- L_2 min. size
- L₃ large for min 1/f noise (beware from doublet!)
- L₄ matching + size
- L₅ matching + common mode rejection
- the parasitic cap. are estimated knowing W's and L's + techno. data
- a new C_m is extracted from inverted NDP equation

$$C_m = 0.5 \frac{NDP}{Z} \cdot \left[C_1 + C_2 + \sqrt{(C_1 + C_2) + 4 \frac{Z}{NDP} C_1 C_2} \right]$$

reiterate until C_m gets constant

BWRC, Dec 12, 2008. P.G.A. Jespers

44

<u>example</u>

Conclusion

 g_m/I_D

- relates a small signal param. to a large signal quantity
- does not vary with transistor widths
- controls the mode of operation, power consump, gain ...

paves the way for sizing CMOS circuits

semi-empirically

(look-up tables : I_D , g_m , g_d , ...)

• by means of the E.K.V./A.C.M. model

(parameters look-up tables or fitting functions)

- simple expressions of I_D , g_m/I_D , g_d/I_D
- q_F monitors mode of operation
- increased physical insight

suitable for sub-micron low-voltage low-power circuits

g_m/I_D sizing methodology for low-power/voltage CMOS circuits

by P.G A. Jespers

to be published 2009 by Springer

paul.jespers@uclouvain.be

<u>A list of references concerning the</u> g_m/l_D methodology:

1) A gm/ID based methodology for the design of CMOS analog circuits and its application to the synthesis of a silicon-on-insulator micropower OTA.

F. Silveira, D. Flandre and P.G.A. Jespers

IEEE Journal of Solid-State Circuits, vol 31, n° 9, sept 1996, p. 1314 - 1319.

(the first reference)

2) A CAD methodology for optimizing transistor current and sizing in analog CMOS design.

D.M. Binkley, C.E. Hopper, S.D. Tucker, B.C. Moss, J.M. Rochelle and D.P. Foty.

IEEE Trans. on computer-aided design of integrated circuits and systems,

vol 22, n° 2, Febr. 2003.

3) gm/ID-based mosfet modeling and modern analog design.

D. Foty, D. Binkley, Matthias Bucher.

Presented at MIXDES, Wroclaw, Poland, 20 June 2002.

4) Une méthodologie de conception des amplificateurs opérationnels à faible consommation *P. Jespers.*

FTFC'2001 records, mai-juin, Paris, p.99-106

5) Automated design methodology for CMOS analog circuit blocks in complex systems.

R. Ionita, A. Vladimirescu and P.G.A. Jespers.

contact Prof Vladimirescu, UCBerkeley, BWRC,2208 Allston Way, Berkeley, CA 94704.

6) Sizing of MOS transistors for amplifier design.

R.L. Oliveira Pinto, M.C. Schneider and C.G. Montoro.

ISCAS 2000.

7) A behavioral model of a 1.8-V flash A/D converter based on device parameters.

M. Hasan, H.H.P. Shen, D.R. Allee, M. Pennell.

IEEE Trans. on computer-aided design of integrated circuits and systems, vol 19, n° 1, Jan 2000, p 69-82