Subranging, Folding and Interpolation ADCs

BOISE

Vishal Saxena, Boise State University (vishalsaxena@boisestate.edu)

Subranging ADCs

Inefficiency of Flash ADC

Only comparators in the vicinity of V_{in} are active at a time \rightarrow low efficiency.

Segmented Quantization

Typical Subranging Block Diagram

Redundancy in fine ADC provided by over- and under-range comparators

Subranging ADC Architecture

- Coarse comparators are connected to the coarse reference ladder taps
- When the MSBs are obtained, the fine ladder taps are addresses and then fine conversion takes place

Digital Redundancy in Fine ADC

- The range of fine search extended on both sides (over and under ranging)
 - Corrects for small errors encountered in coarse conversion step
- Fine conversion comparators are critical (PA+AZ)

Two-Step Subranging/Pipelined ADC

- Coarse-fine two-step subranging architecture
- Conversion residue produced instead of switching reference taps
- Residue gain can be provided to relax offset tolerance in fine ADC
- Very similar to the pipelined architecture

Timing Diagram

- Four conversion steps can be pipelined (needs op-amp)
- Usually DAC + RA settling consumes most of the conversion time
- Residue gain of unity is often used to speed up conversion

Interpolation

Preamp Interpolation

Uniformly spaced zero-crossings in flash ADCs (V_{out} vs V_{in})

<u>Ref</u>: R. van de Grift, I. W. J. M. Rutten, and M. van der Veen, "An 8-bit video ADC incorporating folding and interpolation techniques," *IEEE Journal of Solid-State Circuits*, vol. 22, pp. 944-953, issue 6, 1987.

Resistive Interpolation

- Intermediate zero-crossings are recovered by interpolation.
- DNL is improved by voltage interpolation.
- Requires overlapped linear regions between adjacent preamps.

Interpolation Nonlinearity (I)

- Nonlinear TF of preamps cause errors in the interpolated zero-crossings.
- Interpolation nonlinearity directly translates into DNL and INL.
- Impedance mismatch due to interpolation also causes dynamic errors.

Interpolation Nonlinearity (II)

- Interpolation factor of 4
- Latch input bandwidth equalized
- Critical if input SHA is not used
- Nonlinear interpolation errors remain

<u>Ref</u>: R. J. van de Plassche and P. Baltus, "An 8-bit 100-MHz full-Nyquist analog-todigital converter," *IEEE Journal of Solid-State Circuits*, vol. 23, pp. 1334-1344, issue 6, 1988.

Interpolation Nonlinearity (III)

- Resistive mesh network improves impedance matching at latch input.
- 2-stage (2X) interpolation avoids the interpolation error.

<u>Ref</u>: P. Vorenkamp and R. Roovers, "A 12-b, 60-MSample/s cascaded folding and interpolating ADC," *IEEE Journal of Solid-State Circuits*, vol. 32, pp. 1876-1886, issue 12, 1997.

Capacitive Interpolation

K. Kusumoto, JSSC, Dec. 1993

Current Interpolation

Less accurate then voltage interpolation due to mismatch of current mirrors

<u>Ref</u>: M. Steyaert, R. Roovers, and J. Craninckx, "100 MHz 8 bit CMOS interpolating A/D converter," in *Proceedings of IEEE Custom Integrated Circuits Conference*, 1993, pp. 28.1.1-28.1.4.

Features of Interpolation

- Reduces the total number of preamps by the interpolation factor
 - Reduces the total input capacitance (larger input BW)
- Total number of latches stay the same
- More area- and power-efficient than straight flash ADC
- Voltage interpolation improves DNL (error averaging)
- Loading of interpolation network decreases the preamp gain/BW
- Subject to preamp nonlinearities

Folding ADCs

Inefficiency of Flash ADC

Only comparators in the vicinity of V_{in} are active at a time \rightarrow low efficiency.

Segmented Quantization

Signal Folding

Folding ADC Architecture

- The fine ADC performs amplitude quantization on the folded signal.
- The coarse ADC differentiates which segment V_{in} resides in.

Folding Amplifier

-24-

Signal Folding

<u>Pros</u>

 Folding reduces the comparator number by the folding factor F, while the number of preamps remains the same.

<u>Cons</u>

- Multiple differential pairs in the folder increases the output loading.
- "Frequency multiplication" at the folder output.

Frequency Multiplication

Folding Amplifier

Zero-Crossing Detection

- Only detect zero-crossings instead of fine amplitude quantization
 → insensitive to folder nonlinearities.
- P parallel folding amplifiers are required.

Offset Parallel Folding

- Total # of zero-crossings = Total # of preamps = **P*****F**
- Parallel folding saves the # of comparators, but not the # of preamps \rightarrow still large $C_{\text{in}}.$

Folding + Interpolation

Vishal Saxena

"Rounding" Problem

- Large F results in signal "rounding", causing gain and swing loss.
- Max. folding factor is limited by V_{ov} of folder and supply voltage.

Folding vs. Interpolation

Folding

- Folding works better with non-overlapped active regions between adjacent folders.
- Large V_{ov} (for high speed) of folders and low supply voltage limit the max. achievable F.

Interpolation

• Works better with closely spaced **overlapped** active region between adjacent folding signals.

Observation

- Small F and large P (parallel folders) will help both folding and interpolation, but introduces large C_{in} – approaching flash…
- What else can we do?

Cascaded Folding

- <u>Ideal</u>: A large folding factor F can be developed successively.
- Small F in the 1st-stage folder \rightarrow large V_{ov}, less capacitive loading, and less frequency multiplication effect.

Cascaded Folder Architecture (I)

- Gilbert four-quadrant multiplier based folding amplifier
- Only works with even P, requires a lot of headroom

Cascaded Folder Architecture (II)

- Simple differential pair-based folding amplifiers
- Only works with odd P, compatible with low supply voltage.

Mechanical Model of Cascaded Folding

Distributed Preamplification

Large signal gain developed gradually along the signal path \rightarrow from "soft" to "hard" decision

Useful Formulas

Assuming a two-stage cascaded folding & interpolating ADC, $F_1 = 1^{st}$ -stage folding factor, $F_2 = 2^{nd}$ -stage folding factor, P = # of offset parallel folders, I = total interpolation factor, then, Total # of decision level = $P^*F_1^*I$ ADC Resolution = $Log_2(P^*F_1^*I)$ Total # of fine comp = P^*I/F_2 Total # of coarse comp = P^*F_1 or $P+F_1$? where, usually $P = F_2$ holds.

Circular Thermometer Code

- Very tight coarse comparator offset requirement (<1/2 LSB)
- Aperture delay b/t coarse and fine worsens the problem.

Coarse-Fine Sync (Bit Alignment)

- "Coarse" fold indicator with offset thresholds combined with the output of fine comparator A precisely determines which fold V_{in} resides in.
- Large tolerance on coarse comparator offset and aperture delay errors

Useful Formulas

Assuming a two-stage cascaded folding & interpolating ADC, $F_1 = 1^{st}$ -stage folding factor, $F_2 = 2^{nd}$ -stage folding factor, P = # of offset parallel folders (P>F₂), I = total interpolation factor, then total # of decision level = P*F₁*I, ADC Resolution = Log₂(P*F₁*I), total # of preamps in 1st folder = P*F₁, total # of preamps in 2nd folder = P, total # of fine comparators = P*I/F₂, or F₁+P?

Cascaded Offset Bit Alignment (I)

- F₁ coarse comparators at input and P coarse comparators at 1st-stage folder outputs resolve F₁*P (>F₁*F₂) folds.
- One fine comparator output is utilized to perform offset bit alignment.

Cascaded Offset Bit Alignment (II)

Two-step offset bit alignment – large offset tolerance on F_1 coarse comparators and medium tolerance on P comparators.

References

- 1. Rudy van de Plassche, "CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters," 2nd Ed., Springer, 2005..
- 2. Y. Chiu, *Data Converters Lecture Slides*, UT Dallas 2012.
- B. Boser, Analog-Digital Interface Circuits Lecture Slides, UC Berkeley 2011.