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Successive Approximation ADC
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Successive Approximation ADC
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• Binary search algorithm → N*Tclk to complete N bits

• Conversion speed is limited by comparator, DAC, and digital logic 
(successive approximation register or SAR)
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Binary Search Algorithm
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• DAC output gradually approaches the input voltage

• Comparator differential input gradually approaches zero
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Charge Redistribution SA ADC
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• 4-bit binary-weighted capacitor array DAC (aka charge scaling DAC)

• Capacitor array samples input when Φ1 is asserted (bottom-plate)

• Comparator acts as a zero crossing detector
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Charge Redistribution (MSB)
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• Start with C4 connected to VR and others to 0 (i.e. SAR=1000)
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Comparison (MSB)
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• If VX < 0, then Vi > VR/2, and MSB = 1, C4 remains connected to VR

• If VX > 0, then Vi < VR/2, and MSB = 0, C4 is switched to ground
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Charge Redistribution (MSB–1)
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• SAR=1100
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Comparison (MSB–1)
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• If VX < 0, then Vi > 3VR/4, and MSB-1 = 1, C3 remains connected to VR

• If VX > 0, then Vi < 3VR/4, and MSB-1 = 0, C3 is switched to ground

   X R i
3MSB -1  TEST :  V V V
4

X
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Charge Redistribution (Other Bits)
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Test completes when all four bits are determined w/ four charge 
redistributions and comparisons

• SAR=1010, and so on…
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After Four Clock Cycles…
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• Usually, half Tclk is allocated for charge redistribution and half for 
comparison + digital logic

• VX always converges to 0 (Vos if comparator has nonzero offset)

X



Vishal Saxena -12-

Summing-Node Parasitics
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• If Vos = 0, CP has no effect eventually; otherwise, CP attenuates VX

• Auto-zeroing can be applied to the comparator to reduce offset
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SAR ADC Summary
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• High accuracy achievable (12+ Bits) 
• Low power and linear as no Opamp is required

• Relies on highly accurate comparator 
• Moderate speed (10 MHz) 
• Regaining interest in scaled CMOS processes
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SAR ADC Limitations

– 14 –

•Conversion rate typically limited by finite bandwidth of RC network 
during sampling and bit-tests
•For high resolution, the binary weighted capacitor array can become 
quite large

•E.g. 16-bit resolution, Ctotal~100pF for reasonable kT/C noise contribution
•If matching is an issue, an even larger value may be needed

•E.g. if matching dictates Cmin=10fF, then 216Cmin=655pF
•Commonly used techniques

•Implement "two-stage" or "multi-stage" capacitor network to reduce array 
size [Yee, JSSC 8/79]

•Split DAC or C-2C network
•Calibrate capacitor array to obtain precision beyond raw technology 
matching [Lee, JSSC 12/84]
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Algorithmic (Cyclic) ADC
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Algorithmic (Cyclic) ADC
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•Essentially same as pipeline
•But a single MDAC stage is used in a cyclic fashion for all operations
•Need many clock cycles per conversion
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Algorithmic (Cyclic) ADC
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• Input is sampled first, then circulates in the loop for N clock cycles

• Conversion takes N cycles with one bit resolved in each Tclk

Sample
mode
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Modified Binary Search
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• If VX < VFS/2, then bj = 0, and Vo = 2*VX

• If VX > VFS/2, then bj = 1, and Vo = 2*(VX-VFS/2)

• Vo is called conversion “residue”

• RA = residue amplifier

Conversion
mode
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Modified Binary Search
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• Constant threshold (VFS/2) is used for each comparison

• Residue experiences 2X gain each time it circulates the loop

X

i

FS

clk

FS
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Loop Transfer Function
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• Comparison → if VX < VFS/2, then bj = 0; otherwise, bj = 1

• Residue generation → Vo = 2*(VX - bj*VFS/2)



VX

Vo

VFS/20 VFS

VFS
bj=0 bj=1
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Algorithmic ADC
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• Hardware-efficient, but relatively low conversion speed (bit-per-step)

• Modified binary search algorithm

• Loop-gain (2X) requires the use of a residue amplifier, but greatly simplifies 
theDAC → 1-bit, inherently linear (why?)

• Residue gets amplified in each circulation; the gain accumulated makes the 
later conversion steps insensitive to circuit noise and distortion

• Conversion errors (residue error due to comparator offset and/or loop-gain 
non-idealities) made in earlier conversion cycles also get amplified again 
and again – overall accuracy is usually limited by the MSB conversion step

• Redundancy is often employed to tolerate comparator/loop offsets

• Trimming/calibration/ratio-independent techniques are often used to treat 
loop-gain error, nonlinearity, etc.
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Offset Errors

– 22 –

Ideal RA offset CMP offset

Vo = 2*(Vi - bj*VFS/2) → Vi = bj*VFS/2 + Vo/2
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Redundancy (DEC, RSD)
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• RSD= Redundant Signed Digit
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Loop Transfer Function
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Original w/ Redundancy

• Subtraction/addition both required to compute final sum

• 4-level (2-bit) DAC required instead of 2-level (1-bit) DAC
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Comparator Offset
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• Max tolerance of 
comparator offset is 
±VFS/4 → simple 
comparators

• Similar tolerance also 
applies to RA offset

• Key to understand 
digital redundancy:


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Modified 1-Bit Architecture
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1-b/s RA transfer curve
w/ no redundancy

One extra CMP
added at VR/2
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From 1-Bit to 1.5-Bit Architecture
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A systematic offset –VR/4
introduced to both CMPs

A 2X scaling is performed
on all output bits
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The 1.5-Bit Architecture
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• 3 decision levels 
→ ENOB = log23 = 1.58

• Max tolerance of comparator 
offset is ±VR/4

• An implementation of the 
Sweeny-Robertson-Tocher 
(SRT) division principle

• The conversion accuracy 
solely relies on the loop-gain 
error, i.e., the gain error and 
nonlinearity

• A 3-level DAC is required  o i RV = 2 V - b -1 V
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The Multiplier DAC (MDAC)
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• 2X gain + 3-level DAC + subtraction all integrated

• A 3-level DAC is perfectly linear in fully-differential form

• Can be generalized to n.5-b/stage architectures
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A Linear 3-Level DAC
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Alternative 1.5-Bit Architecture
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Ref:  E. G. Soenen and R. L. Geiger, “An architecture and an algorithm for fully digital 
correction of monolithic pipelined ADC’s,” IEEE Trans. on Circuits and Systems II, vol. 
42, issue 3, pp. 143-153, 1995.
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Error Mechanisms of RA
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• Capacitor mismatch

• Op-amp finite-gain error and 
nonlinearity

• Charge injection and clock 
feedthrough (S/H)

• Finite circuit bandwidth

  o i RV = 2 V - b -1 V
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RA Gain Error and Nonlinearity
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Raw accuracy is usually limited to 10-12 bits w/o error correction

R R

R

R

i

R

R

R

o

iR R

o



Vishal Saxena -34-

Static Gain-Error Correction
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Analog-domain method:

Digital-domain method:

Do we need to correct for kd2 error?
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RA Gain Trimming
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• Precise gain-of-two is achieved by adjustment of the trim array

• Finite-gain error of op-amp is also compensated (not nonlinearity)

C1/C2 = 1 nominally
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Split-Array Trimming DAC
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• Successive approximation utilized to find the correct gain setting

• Coupling cap is slightly increased to ensure segmental overlap
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Digital Radix Correction
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Unroll this:
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Integrating ADC



Vishal Saxena -39-

Single-Slope Integration ADC
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• Sampled-and-held input (Vi)

• Counter keeps counting until comparator output toggles

• Simple, inherently monotonic, but very slow (2N*Tclk/sample)

i

fclk o
X
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Single-Slope Integration ADC
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• INL depends on the linearity of the ramp signal

• Precision capacitor (C), current source (I), and clock (Tclk) required

• Comparator must handle wide input range of [0, VFS]
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Dual-Slope Integration ADC
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• RC integrator replaces the I-C integrator

• Input and reference voltages undergo the same signal path

• Comparator only detects zero crossing
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Dual-Slope Integration ADC
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• Exact values of R, C, and Tclk are not required

• Comparator offset doesn’t matter (what about its delay?)

• Op-amp offset introduces gain error and offset (why?)

• Op-amp nonlinearity introduces INL error
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Op-Amp Offset
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Vi = 0 Vi = VR

N2 ≠ 0 → Offset Longer integration time!




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Subranging Dual-Slope ADC
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• MSB discharging stops at the immediate next integer count past Vt

• Much faster conversion speed compared to dual-slope
• Two current sources (matched) and two comparators required
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Subranging Dual-Slope ADC
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• Precise Vt is not required if carry is propagated

• Matching between the current sources is critical

→ if I1 = I, I2 = (1+δ)·I/256, then |δ| ≤ 0.5/256

• It’d be nice if CMP 1 can be eliminated → ZX detector!

 

 





X

X

dV 1 I ,
dt C

dV 2 I
dt 256C

21o NWND 

X

1 2

t



Vishal Saxena -46-

Subranging Dual-Slope ADC
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• CMP 1 response time is not critical
• Delay from CNT 1 to MSB current shut-off is not critical

→ constant delay results in an offset (why?)
• CMP 2 response time is critical, but relaxed due to subranging
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Subranging Multi-Slope ADC
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i

X
S

fclk

Ref:  J.-G. Chern and A. A. Abidi, “An 11 bit, 50 kSample/s CMOS A/D converter cell 
using a multislope integration technique,” in Proceedings of IEEE Custom Integrated 
Circuits Conference, 1989, pp. 6.2/1-6.2/4.
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Subranging Multi-Slope ADC

– 48 –

• Single comparator detects zero-crossing

• Comparator response time greatly relaxed

• Matching between the current sources still critical
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Subranging Multi-Slope ADC
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• Comparator response time is not critical except the last one
• Delays from CNTs to current sources shut-off are not critical

→ constant delays only result in offsets
• Last comparator response time is critical, but relaxed due to multi-

step subranging
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