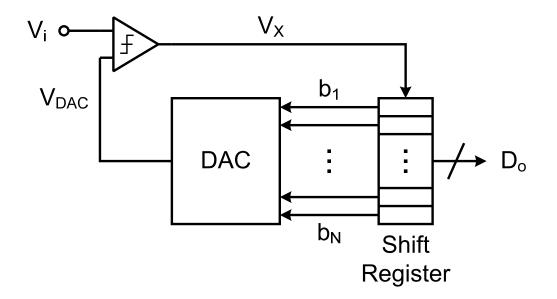


SAR, Algorithmic and Integrating ADCs

Vishal Saxena, Boise State University (vishalsaxena@boisestate.edu)

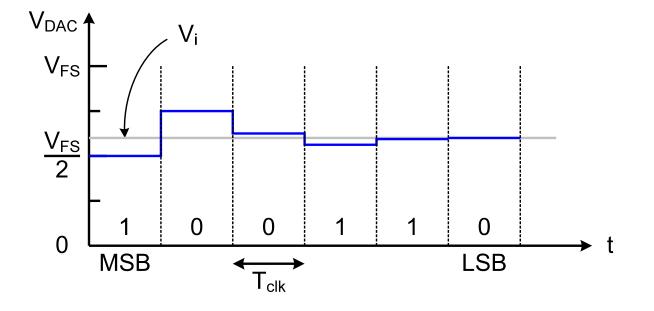
Successive Approximation ADC

Successive Approximation ADC



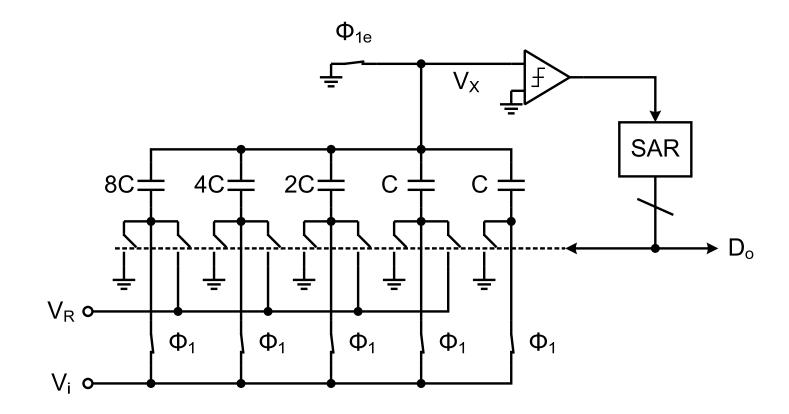
- Binary search algorithm $\rightarrow N^*T_{clk}$ to complete N bits
- Conversion speed is limited by comparator, DAC, and digital logic (successive approximation register or SAR)

Binary Search Algorithm



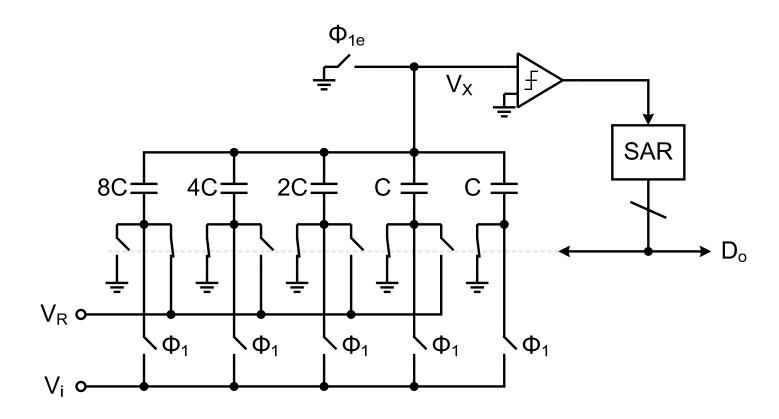
- DAC output gradually approaches the input voltage
- Comparator differential input gradually approaches zero

Charge Redistribution SA ADC



- 4-bit binary-weighted capacitor array DAC (*aka* charge scaling DAC)
- Capacitor array samples input when Φ_1 is asserted (bottom-plate)
- Comparator acts as a zero crossing detector

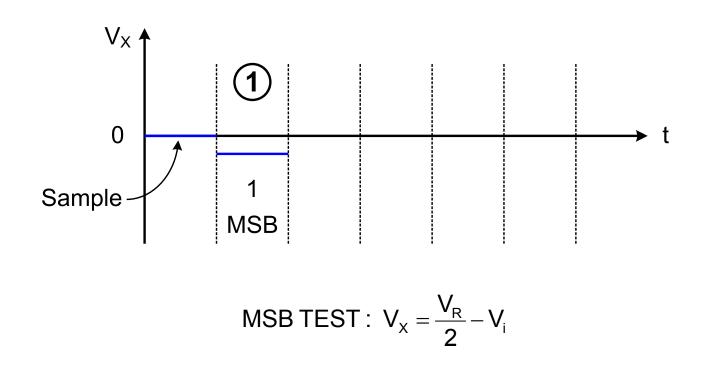
Charge Redistribution (MSB)



• Start with C₄ connected to V_R and others to 0 (i.e. SAR=1000)

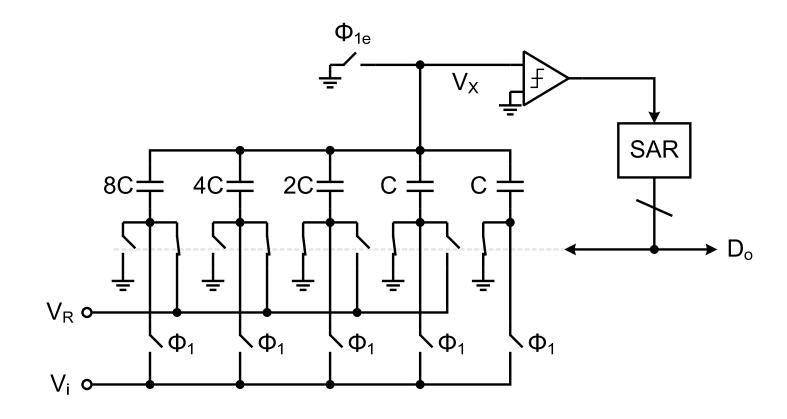
$$V_{i} \cdot 16C = (V_{R} - V_{X})C_{4} - V_{X}(C_{3} + C_{2} + C_{1} + C_{0}) \implies V_{X} = \frac{V_{R} \cdot 8C - V_{i} \cdot 16C}{16C} = \frac{V_{R}}{2} - V_{i}$$

Comparison (MSB)



- If $V_X < 0$, then $V_i > V_R/2$, and MSB = 1, C_4 remains connected to V_R
- If $V_X > 0$, then $V_i < V_R/2$, and MSB = 0, C_4 is switched to ground

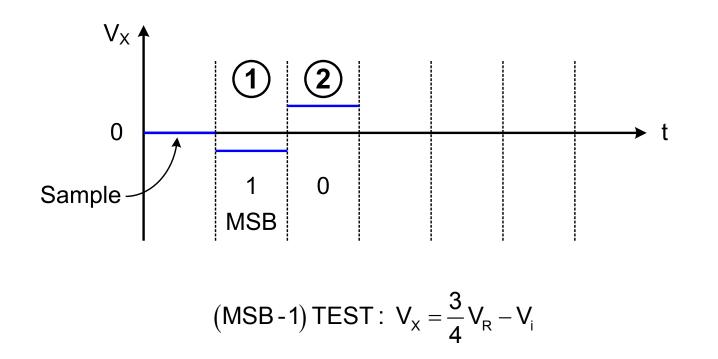
Charge Redistribution (MSB-1)



• SAR=1100

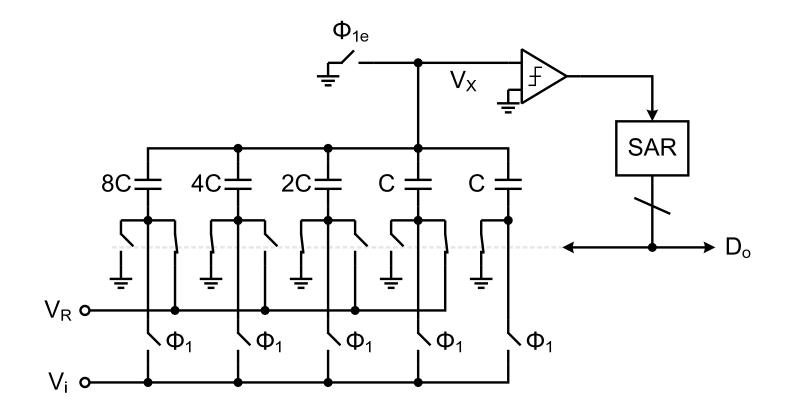
$$V_{i} \cdot 16C = (V_{R} - V_{X}) \cdot 12C - V_{X} \cdot 4C \implies V_{X} = \frac{V_{R} \cdot 12C - V_{i} \cdot 16C}{16C} = \frac{3}{4}V_{R} - V_{i}$$

Comparison (MSB-1)



- If $V_X < 0$, then $V_i > 3V_R/4$, and MSB-1 = 1, C_3 remains connected to V_R
- If $V_X > 0$, then $V_i < 3V_R/4$, and MSB-1 = 0, C_3 is switched to ground

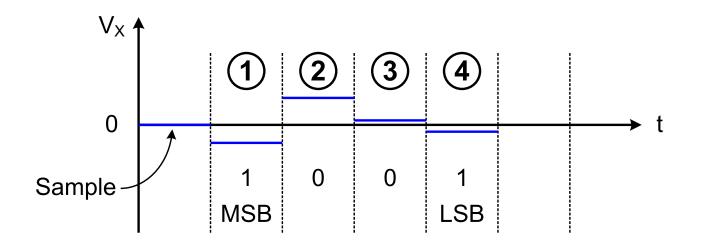
Charge Redistribution (Other Bits)



• SAR=1010, and so on...

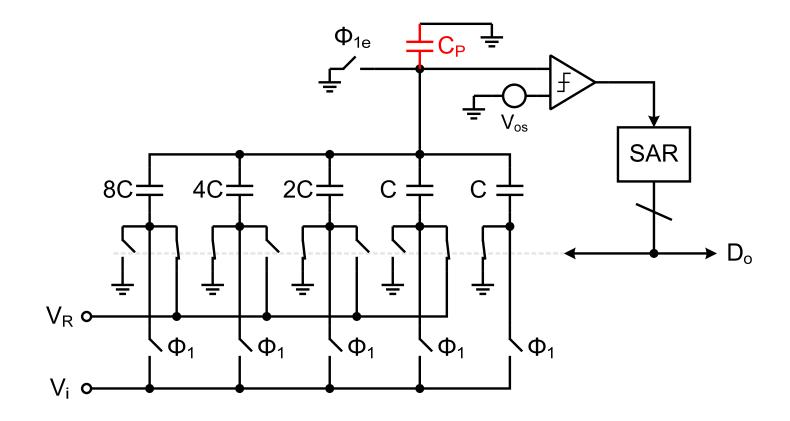
Test completes when all four bits are determined w/ four charge redistributions and comparisons

After Four Clock Cycles...



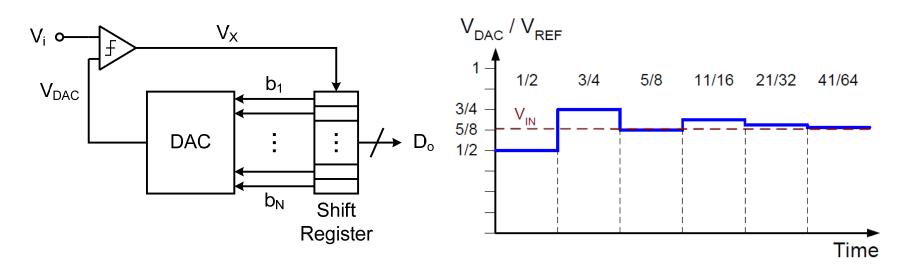
- Usually, half T_{clk} is allocated for charge redistribution and half for comparison + digital logic
- V_X always converges to 0 (V_{os} if comparator has nonzero offset)

Summing-Node Parasitics



- If $V_{os} = 0$, C_P has no effect eventually; otherwise, C_P attenuates V_X
- Auto-zeroing can be applied to the comparator to reduce offset

SAR ADC Summary



- High accuracy achievable (12+ Bits)
- Low power and linear as no Opamp is required
- Relies on highly accurate comparator
 - Moderate speed (10 MHz)
 - Regaining interest in scaled CMOS processes

SAR ADC Limitations

•Conversion rate typically limited by finite bandwidth of RC network during sampling and bit-tests

•For high resolution, the binary weighted capacitor array can become quite large

•E.g. 16-bit resolution, C_{total}~100pF for reasonable kT/C noise contribution •If matching is an issue, an even larger value may be needed

•E.g. if matching dictates C_{min} =10fF, then 2¹⁶ C_{min} =655pF

Commonly used techniques

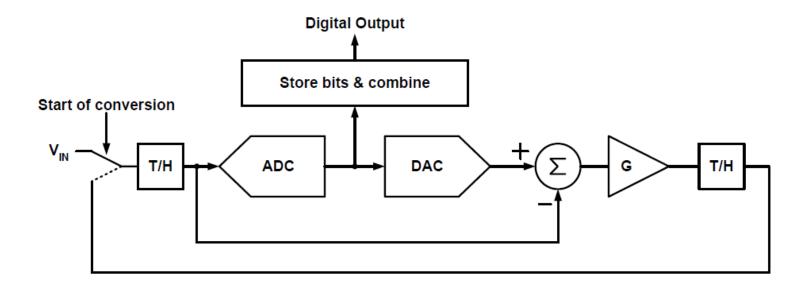
•Implement "two-stage" or "multi-stage" capacitor network to reduce array size [Yee, JSSC 8/79]

•Split DAC or C-2C network

•Calibrate capacitor array to obtain precision beyond raw technology matching [Lee, JSSC 12/84]

Algorithmic (Cyclic) ADC

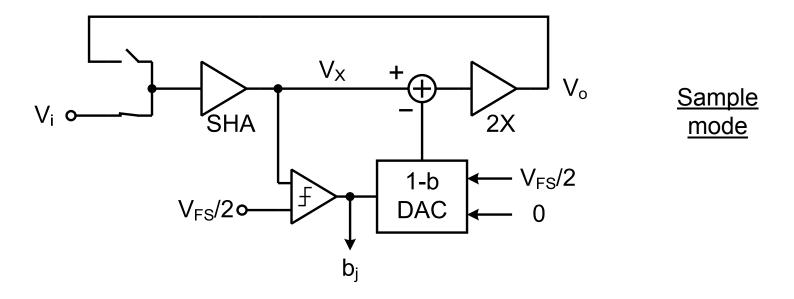
Algorithmic (Cyclic) ADC



•Essentially same as pipeline

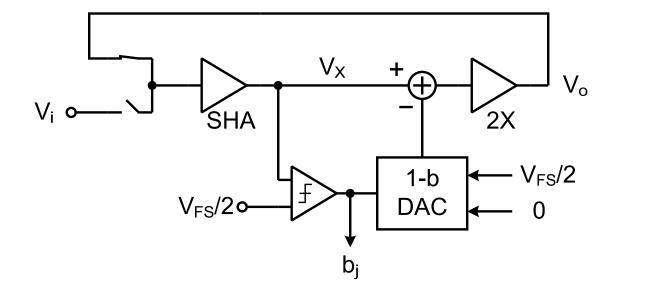
- •But a single MDAC stage is used in a cyclic fashion for all operations
- Need many clock cycles per conversion

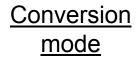
Algorithmic (Cyclic) ADC



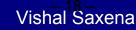
- Input is sampled first, then circulates in the loop for N clock cycles
- Conversion takes N cycles with one bit resolved in each T_{clk}

Modified Binary Search

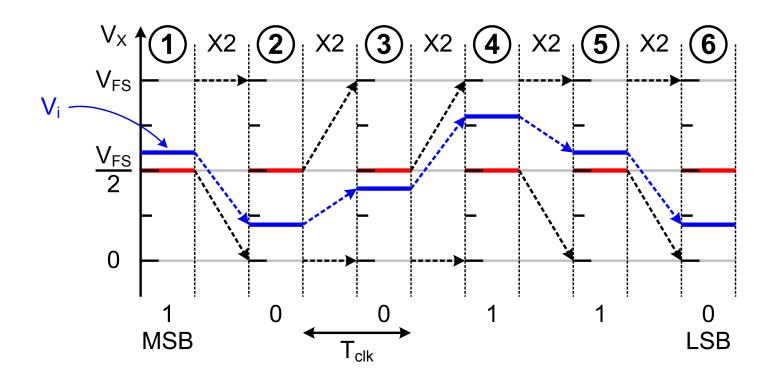




- If $V_X < V_{FS}/2$, then $b_j = 0$, and $V_o = 2^*V_X$
- If $V_X > V_{FS}/2$, then $b_j = 1$, and $V_o = 2^*(V_X V_{FS}/2)$
- V_o is called conversion "residue"
- RA = residue amplifier

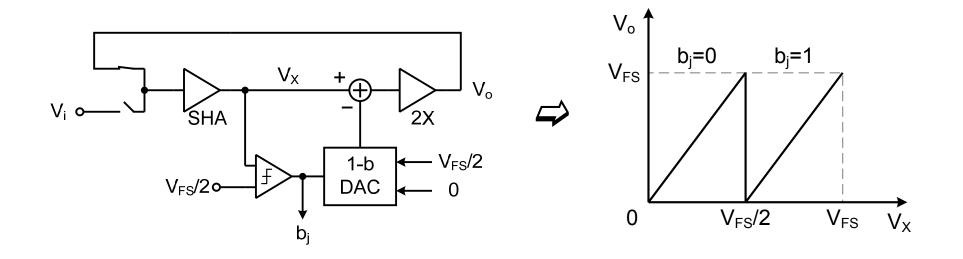


Modified Binary Search



- Constant threshold ($V_{FS}/2$) is used for each comparison
- Residue experiences 2X gain each time it circulates the loop

Loop Transfer Function



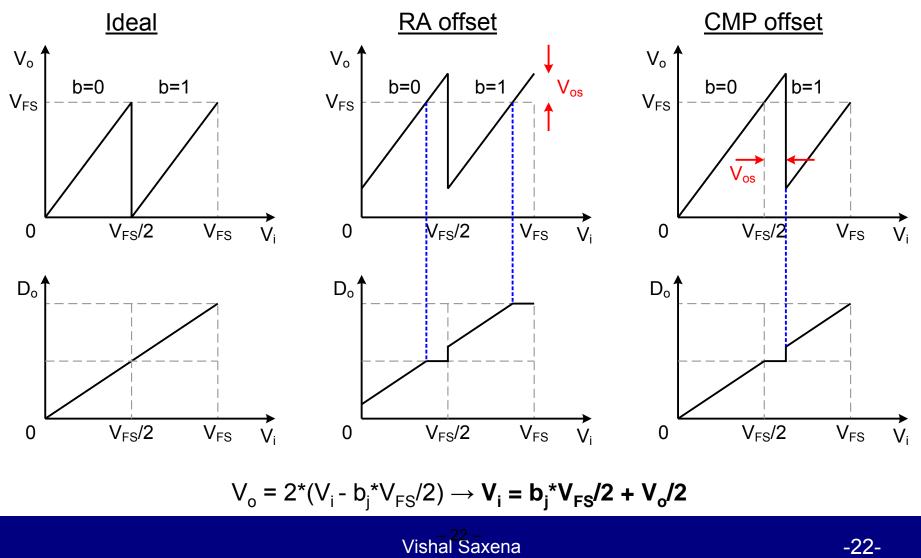
• Comparison \rightarrow if $V_X < V_{FS}/2$, then $b_i = 0$; otherwise, $b_i = 1$

• Residue generation $\rightarrow V_o = 2^*(V_X - b_i^*V_{FS}/2)$

Algorithmic ADC

- Hardware-efficient, but relatively low conversion speed (bit-per-step)
- Modified binary search algorithm
- Loop-gain (2X) requires the use of a residue amplifier, but greatly simplifies the DAC → 1-bit, inherently linear (why?)
- Residue gets amplified in each circulation; the gain accumulated makes the later conversion steps insensitive to circuit noise and distortion
- Conversion errors (residue error due to comparator offset and/or loop-gain non-idealities) made in earlier conversion cycles also get amplified again and again – overall accuracy is usually limited by the MSB conversion step
- Redundancy is often employed to tolerate comparator/loop offsets
- Trimming/calibration/ratio-independent techniques are often used to treat loop-gain error, nonlinearity, etc.

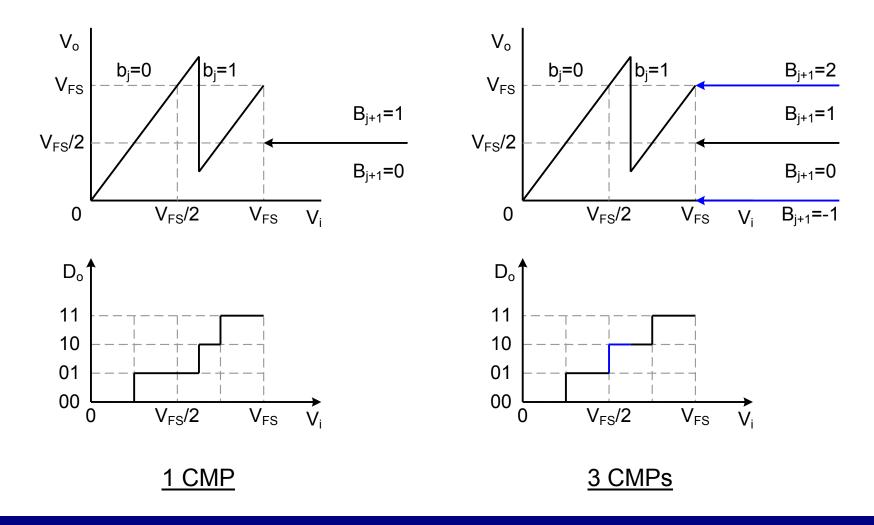
Offset Errors



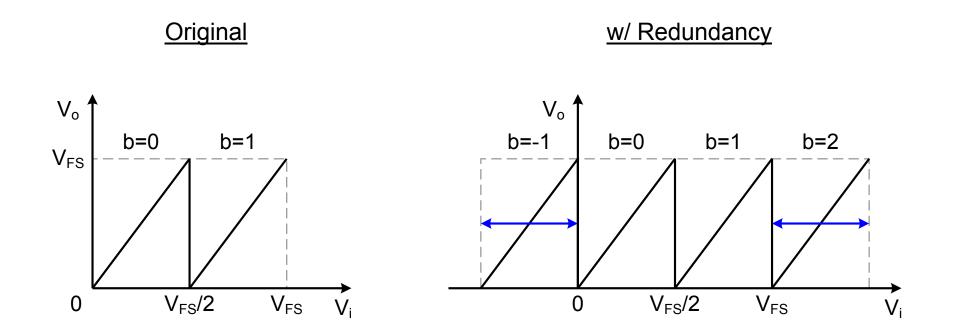
Vishal Saxena

Redundancy (DEC, RSD)

• RSD= Redundant Signed Digit

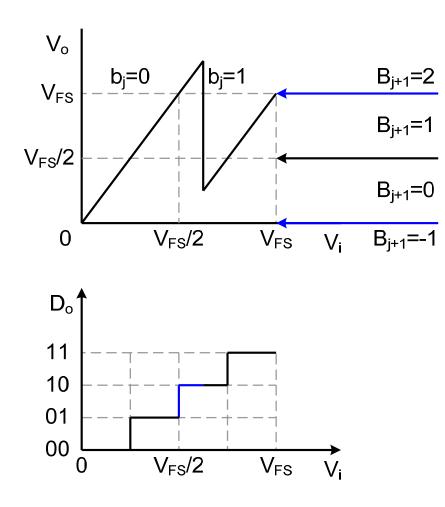


Loop Transfer Function

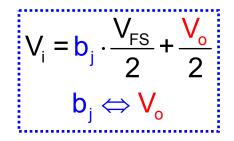


- Subtraction/addition both required to compute final sum
- 4-level (2-bit) DAC required instead of 2-level (1-bit) DAC

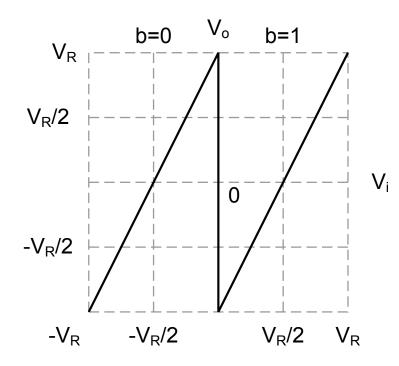
Comparator Offset

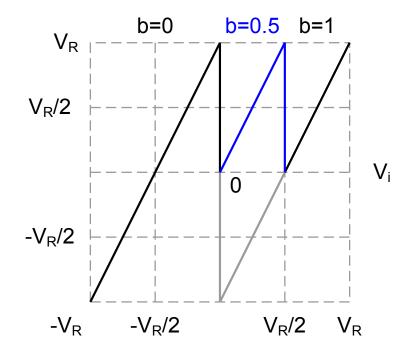


- Max tolerance of comparator offset is $\pm V_{FS}/4 \rightarrow simple$ comparators
- Similar tolerance also applies to RA offset
- Key to understand digital redundancy:



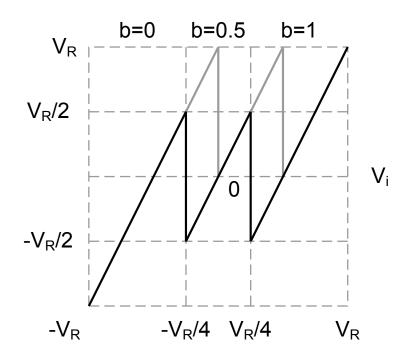
Modified 1-Bit Architecture



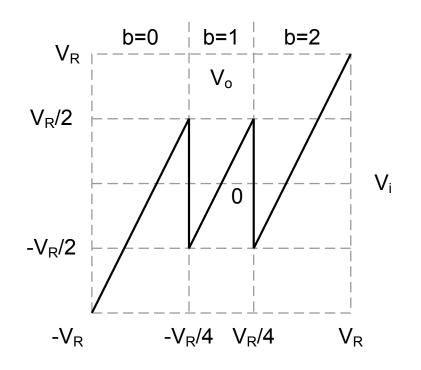


1-b/s RA transfer curve w/ no redundancy One extra CMP added at $V_R/2$

From 1-Bit to 1.5-Bit Architecture

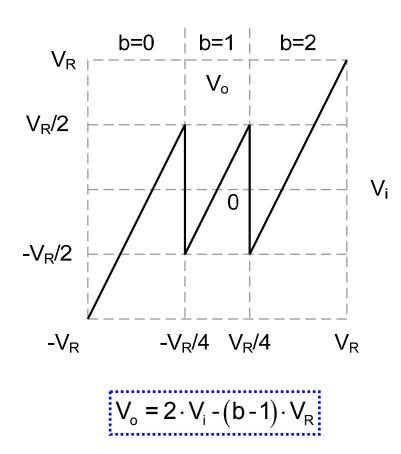


A systematic offset $-V_R/4$ introduced to both CMPs



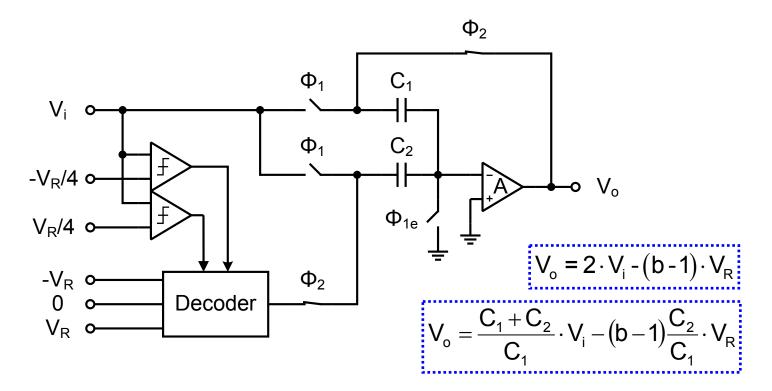
A 2X scaling is performed on all output bits

The 1.5-Bit Architecture



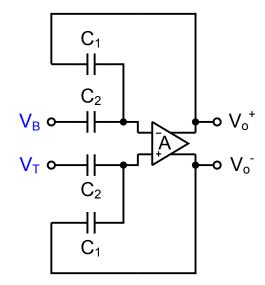
- 3 decision levels $\rightarrow ENOB = \log_2 3 = 1.58$
- Max tolerance of comparator offset is ±V_R/4
- An implementation of the Sweeny-Robertson-Tocher (SRT) division principle
- The conversion accuracy solely relies on the loop-gain error, i.e., the gain error and nonlinearity
- A 3-level DAC is required

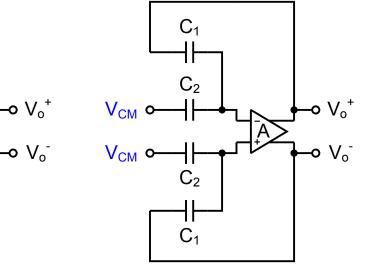
The Multiplier DAC (MDAC)

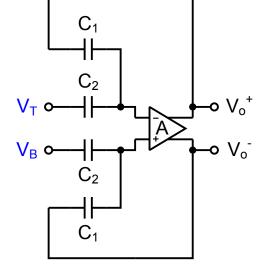


- 2X gain + 3-level DAC + subtraction all integrated
- A 3-level DAC is perfectly linear in fully-differential form
- Can be generalized to n.5-b/stage architectures

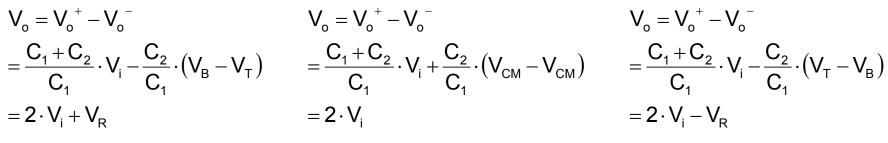
A Linear 3-Level DAC

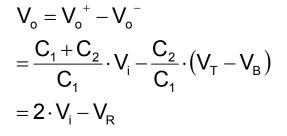






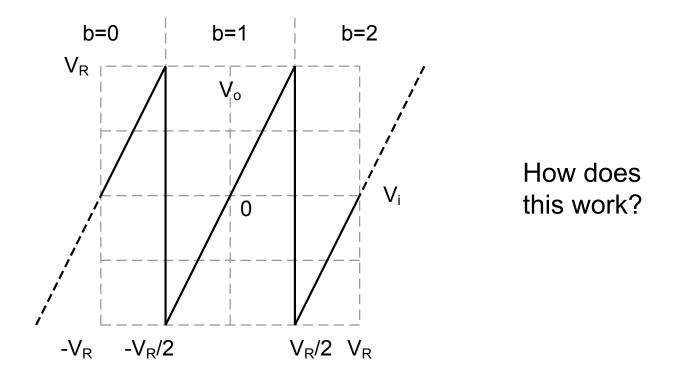
 $V_{o} = V_{o}^{+} - V_{o}^{-}$ $= 2 \cdot V_i + V_R$





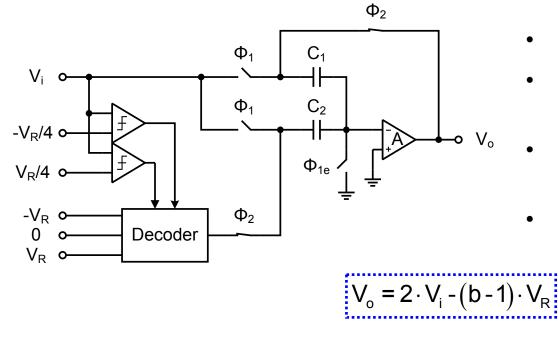
Vishal Saxena

Alternative 1.5-Bit Architecture

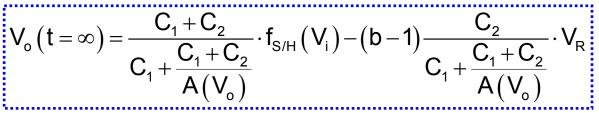


<u>Ref</u>: E. G. Soenen and R. L. Geiger, "An architecture and an algorithm for fully digital correction of monolithic pipelined ADC's," *IEEE Trans. on Circuits and Systems II,* vol. 42, issue 3, pp. 143-153, 1995.

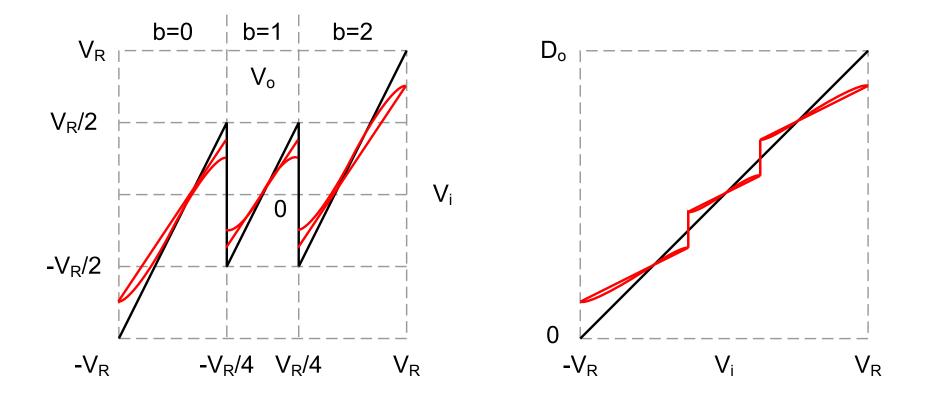
Error Mechanisms of RA



- Capacitor mismatch
- Op-amp finite-gain error and nonlinearity
- Charge injection and clock feedthrough (S/H)
- Finite circuit bandwidth



RA Gain Error and Nonlinearity



Raw accuracy is usually limited to 10-12 bits w/o error correction

Static Gain-Error Correction

Analog-domain method:

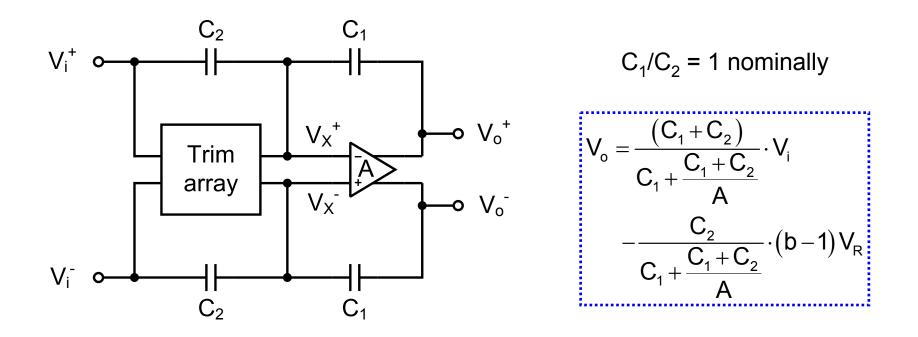
$$V_{o} = \frac{C_{1} + C_{2}}{C_{1} + \frac{C_{1} + C_{2}}{A}} \cdot V_{i} - b \cdot \frac{C_{2}}{C_{1} + \frac{C_{1} + C_{2}}{A}} \cdot V_{R} = \frac{ka_{1} \cdot V_{i} - b \cdot (ka_{2} \cdot V_{R})}{ka_{1} \cdot V_{i} - b \cdot (ka_{2} \cdot V_{R})}$$

Digital-domain method:

$$\left(\frac{V_{i}}{V_{R}}\right) = \frac{C_{1} + \frac{C_{1} + C_{2}}{A}}{C_{1} + C_{2}} \cdot \left(\frac{V_{o}}{V_{R}}\right) + \frac{C_{2}}{C_{1} + C_{2}} \cdot b \implies D_{i} = \mathbf{kd}_{1} \cdot D_{o} + \mathbf{kd}_{2} \cdot b$$

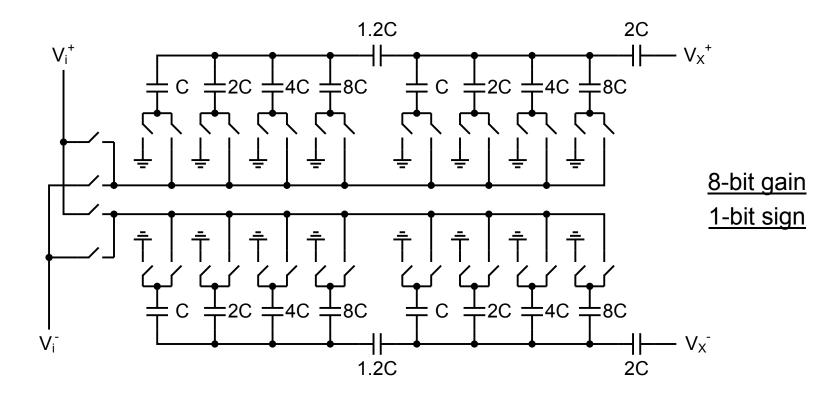
Do we need to correct for kd₂ error?

RA Gain Trimming



- Precise gain-of-two is achieved by adjustment of the trim array
- Finite-gain error of op-amp is also compensated (**not nonlinearity**)

Split-Array Trimming DAC



- Successive approximation utilized to find the correct gain setting
- Coupling cap is slightly increased to ensure segmental overlap

Digital Radix Correction

$$\left(\frac{V_{i}}{V_{R}}\right) = \frac{C_{1} + \frac{C_{1} + C_{2}}{A}}{C_{1} + C_{2}} \cdot \left(\frac{V_{o}}{V_{R}}\right) + \frac{C_{2}}{C_{1} + C_{2}} \cdot b \implies D_{i} = kd_{1} \cdot D_{o} + kd_{2} \cdot b$$

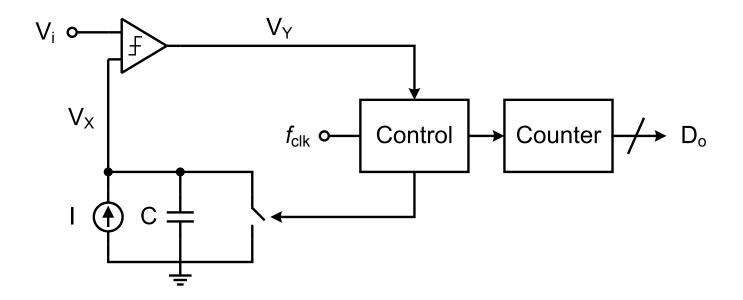
Unroll this:

$$D_{j} = kd_{2} \cdot b_{j} + kd_{1} \cdot D_{j+1}$$

= $kd_{2} \cdot b_{j} + kd_{1} \cdot (kd_{2} \cdot b_{j+1} + kd_{1} \cdot D_{j+2})$
= $(kd_{2} \cdot b_{j}) + kd_{1} \cdot (kd_{2} \cdot b_{j+1}) + kd_{1}^{2} \cdot D_{j+2}$
= $(kd_{2} \cdot b_{j}) + kd_{1} \cdot (kd_{2} \cdot b_{j+1}) + kd_{1}^{2} \cdot (kd_{2} \cdot b_{j+2}) + kd_{1}^{3} \cdot D_{j+3}$
= $(kd_{2} \cdot b_{j}) + kd_{1} \cdot (kd_{2} \cdot b_{j+1}) + kd_{1}^{2} \cdot (kd_{2} \cdot b_{j+2}) + kd_{1}^{3} \cdot (kd_{2} \cdot b_{j+3}) + \dots$

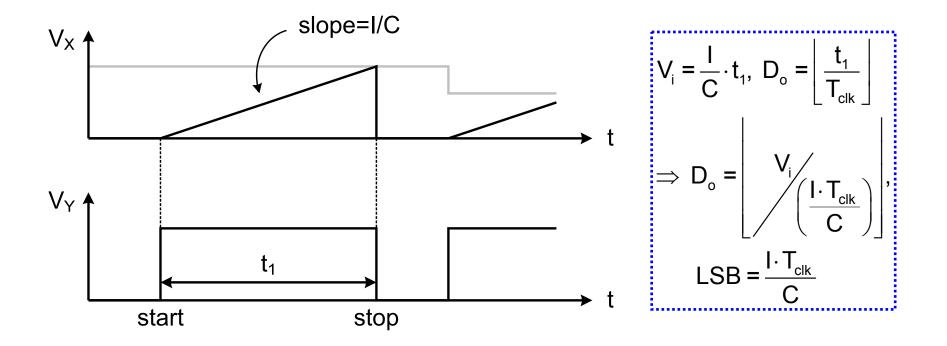
Integrating ADC

Single-Slope Integration ADC



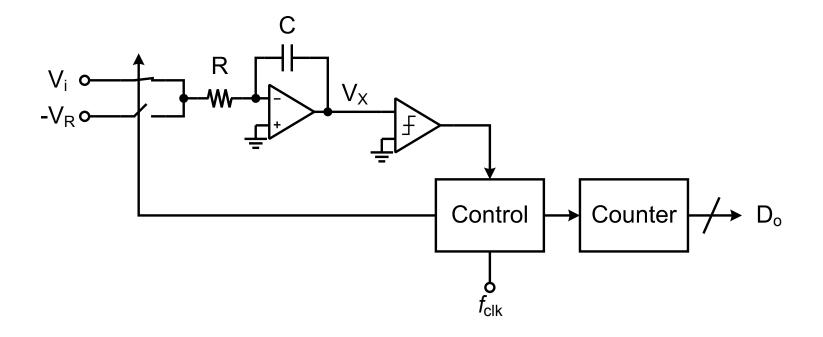
- Sampled-and-held input (V_i)
- Counter keeps counting until comparator output toggles
- Simple, inherently monotonic, but very slow (2^N*T_{clk}/sample)

Single-Slope Integration ADC



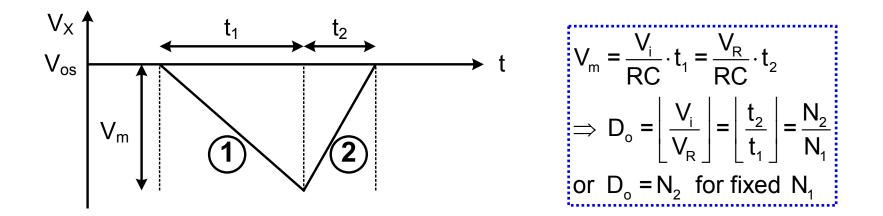
- INL depends on the linearity of the ramp signal
- Precision capacitor (C), current source (I), and clock (T_{clk}) required
- Comparator must handle wide input range of [0, V_{FS}]

Dual-Slope Integration ADC



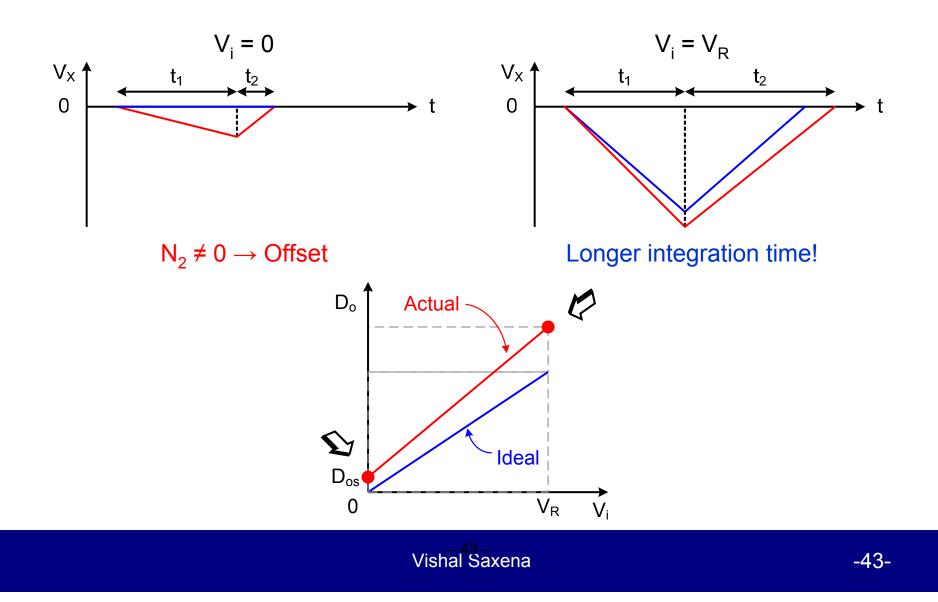
- RC integrator replaces the I-C integrator
- Input and reference voltages undergo the same signal path
- Comparator only detects zero crossing

Dual-Slope Integration ADC

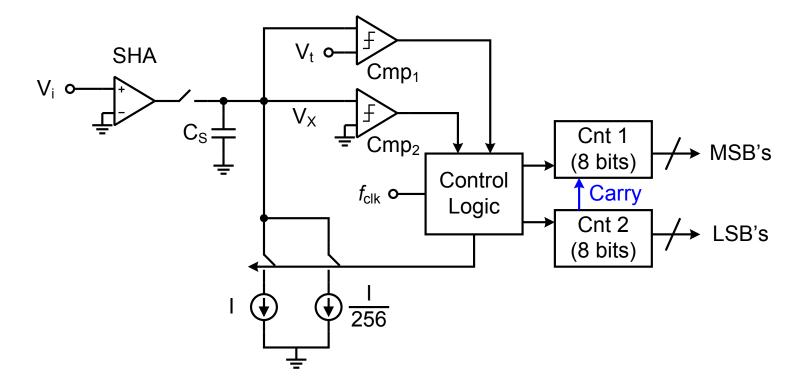


- Exact values of R, C, and T_{clk} are not required
- Comparator offset doesn't matter (what about its delay?)
- Op-amp offset introduces gain error and offset (why?)
- Op-amp nonlinearity introduces INL error

Op-Amp Offset

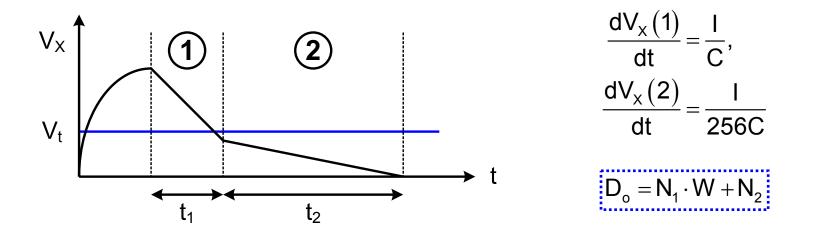


Subranging Dual-Slope ADC



- MSB discharging stops at the immediate next integer count past V_t
- Much faster conversion speed compared to dual-slope
- Two current sources (matched) and two comparators required

Subranging Dual-Slope ADC

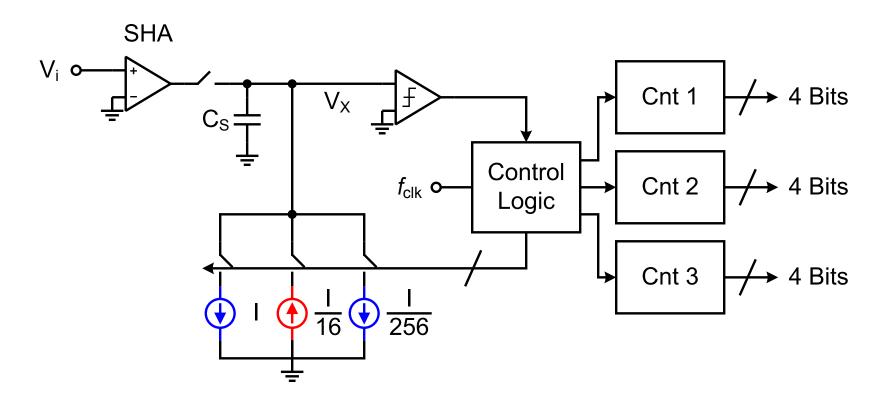


- Precise V_t is not required if carry is propagated
- Matching between the current sources is critical \rightarrow if I₁ = I, I₂ = (1+ δ)·I/256, then $|\delta| \le 0.5/256$
- It'd be nice if CMP 1 can be eliminated \rightarrow ZX detector!

Subranging Dual-Slope ADC

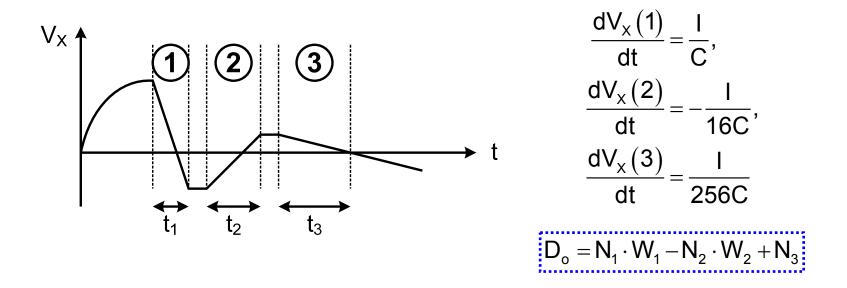
- CMP 1 response time is not critical
- Delay from CNT 1 to MSB current shut-off is not critical
 → constant delay results in an offset (why?)
- CMP 2 response time is critical, but relaxed due to subranging

Subranging Multi-Slope ADC



<u>Ref</u>: J.-G. Chern and A. A. Abidi, "An 11 bit, 50 kSample/s CMOS A/D converter cell using a multislope integration technique," in *Proceedings of IEEE Custom Integrated Circuits Conference*, 1989, pp. 6.2/1-6.2/4.

Subranging Multi-Slope ADC



- Single comparator detects zero-crossing
- Comparator response time greatly relaxed
- Matching between the current sources still critical

Subranging Multi-Slope ADC

- Comparator response time is not critical except the last one
- Delays from CNTs to current sources shut-off are not critical
 → constant delays only result in offsets
- Last comparator response time is critical, but relaxed due to multistep subranging

References

- 1. Rudy van de Plassche, "CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters," 2nd Ed., Springer, 2005..
- 2. Y. Chiu, *Data Converters Lecture Slides*, UT Dallas 2012.
- B. Boser, Analog-Digital Interface Circuits Lecture Slides, UC Berkeley 2011.