

Recent Advances in Multistep Nyquist ADC's

Yun Chiu

Erik Jonsson Distinguished Professor University of Texas at Dallas

Performance vs. Energy Efficiency

Walden Figure-of-Merit (FoM) for ADC

FoM "measures" energy efficiency

- P = power consumption
- ENOB = effective number of bits
- BW = min($f_s/2$, ERBW)
- ERBW = effective resolution BW

MWSCAS, 8/5/12

How to compare ADC performance?

- <u>Higher performance</u> with <u>lower cost</u> is the obvious criterion for comparison
 - ADC performance: speed (sample rate) or bandwidth, resolution
 - **ADC cost:** power consumption, die size

Q: how to define performance quantitatively?

Definition of PERFORMANCE

- Bandwidth (or speed) performance
 - BW = min(f_s /2, ERBW)
- Resolution (or precision) performance
 - Effective number of bits (ENOB), or equivalently effective number of steps (ENOS) = 2^{ENOB}
- Separately, it is easy. But how to combine the two in one merit? Just take the product?

Definition of PERFORMANCE

- 2×BW → 2×Power, 2×Area (same ENOS) →
 Power, area scale linearly with bandwidth
- 2×ENOS → 4×Power, 4×Area (same BW) →
 Power, area scale <u>quadratically</u> with precision
 (for thermal noise or matching limited design)

Power, Area \propto BW, Power, Area \propto ENOS²

Definition of PERFORMANCE

Power & Area \propto BW, \propto ENOS²

Definition:

This definition avoids penalizing high-SNR works as Walden FoM does

Definition of ENERGY EFFICIENCY

Power & Area \propto BW, \propto ENOS²

Definition:

<u>Note:</u> Performance × Energy Efficiency = $2 \cdot BW \cdot 4^{ENOB} \times \frac{P}{2 \cdot BW \cdot 4^{ENOB}} = Power$

Performance–Efficiency (PE) Chart

Pipeline ADC PE Chart (< 2005)

ISSCC & VLSI data

Pipeline ADC PE Chart (< 2010)

ISSCC & VLSI data

Pipeline ADC PE Chart(< 2012)

ISSCC & VLSI data

SAR ADC PE Chart (< 2005)

ISSCC & VLSI data

SAR ADC PE Chart (< 2010)

ISSCC & VLSI data

SAR ADC PE Chart (< 2012)

ISSCC & VLSI data

Nyquist ADC PE Chart (mid 90s – 2011)

Nyquist ADC PE Chart (mid 90s – 2011)

ISSCC & VLSI data

Nyquist ADC PE Chart (mid 90s – 2011)

Efficiency [J/Step²]

Digital-Domain Calibration

The Basic Idea

Calibration = <u>efficient</u> digital post-processing to undo <u>certain</u> analog errors

Two Essential Components

- 1. A digital-domain technique (e.g. equation) to recover accurate analog information from raw digital output
 - Treat analog precision or linearity only
 - Neglect consequence on SNR

$$A_{CL} \approx -\frac{C_{1}}{C_{2}} \left(1 - \frac{1}{\beta A} \right) = \# \qquad V_{i} - \bigvee_{A_{CL}} V_{o} \qquad A/D \qquad D_{o} \qquad D_{i} = [V_{i}]$$

$$analog \leftarrow \rightarrow digital$$

- 2. An algorithm to identify the error parameters
 - Foreground vs. Background approaches

Example – Multistage Pipeline ADC

Multiplying DAC Error Mechanism

DAC bit-encoding scheme

d _j	-3	-2	-1	0	1	2	3
d _{j,1}	-1	-1	-1	-1	-1	0	1
d _{j,2}	-1	-1	-1	0	1	1	1
d _{j,3}	-1	0	1	1	1	1	1

$$\mathbf{d_{j}} = \mathbf{d_{j,1}} + \mathbf{d_{j,2}} + \mathbf{d_{j,3}}$$

- Seven decision levels \rightarrow ENOB $\approx \log_2 7 = 2.807$
- Residue transfer function $V_i(V_{i+1})$ can be derived w/ charge conservation
- **Capacitor mismatch** and **amplifier gain error** are dominant error sources

Residue Transfer Function (2.5b Pipeline)

Only half of the internal dynamic range is used under ideal condition

What happens with comparator offset?

Internal Redundancy

Comparator and amplifier offsets are tolerated by internal redundancy

Redundancy in Subranging ADC

Equation for MDAC RTF Correction

Analog residue function:

$$\mathbf{V}_{j} = \left(\mathbf{d}_{j,1} \cdot \frac{\mathbf{C}_{1}}{\sum \mathbf{C}} + \mathbf{d}_{j,2} \cdot \frac{\mathbf{C}_{2}}{\sum \mathbf{C}} + \mathbf{d}_{j,3} \cdot \frac{\mathbf{C}_{3}}{\sum \mathbf{C}}\right) \cdot \mathbf{V}_{r} + \mathbf{V}_{j+1} \cdot \frac{\mathbf{C}_{4} + \sum \mathbf{C}/\mathbf{A}}{\sum \mathbf{C}}$$

Normalized residue function:

$$\frac{V_{j}}{V_{r}} = \left(d_{j,1} \cdot \frac{C_{1}}{\sum C} + d_{j,2} \cdot \frac{C_{2}}{\sum C} + d_{j,3} \cdot \frac{C_{3}}{\sum C} \right) + \frac{V_{j+1}}{V_{r}} \cdot \frac{C_{4} + \sum C/A}{\sum C}$$
$$\frac{V_{j}}{V_{r}} = \left(d_{j,1} + d_{j,2} + d_{j,3} \right) \cdot \frac{1}{4} + \frac{V_{j+1}}{V_{r}} \cdot \frac{1}{4} = \left[d_{j} \cdot \frac{1}{4} + \frac{V_{j+1}}{V_{r}} \cdot \frac{1}{4} \right] \quad \text{(so ideal residue function)}$$
$$\underline{\text{Digital representation (EC EQ):}}$$

$$\square_{j} = \left(d_{j,1} \cdot \beta_{j,1} + d_{j,2} \cdot \beta_{j,2} + d_{j,3} \cdot \beta_{j,3} \right) + \square_{j+1} \cdot \alpha_{j}$$

$$= \sum_{k} d_{j,k} \cdot \beta_{j,k} + \square_{j+1} \cdot \alpha_{j}$$

$$\blacksquare \text{ error parameters: } \{ \alpha_{j}, \beta_{j,k} \}$$

Bit-Weight (Radix) Correction

Alternatively,

$$D_{1} = D_{in}$$

$$= \dots + \frac{d_{j}}{2^{j}} \cdot (1 + \Delta_{j}) + \frac{d_{j+1}}{2^{j+1}} \cdot (1 + \Delta_{j+1}) + \frac{d_{j+2}}{2^{j+2}} \cdot (1 + \Delta_{j+2}) + \dots$$

$$= \dots + \frac{(d_{j} + d_{j}\Delta_{j})}{2^{j}} + \frac{(d_{j+1} + d_{j+1}\Delta_{j+1})}{2^{j+1}} + \frac{(d_{j+2} + d_{j+2}\Delta_{j+2})}{2^{j+2}} + \dots$$
segmental offset

Bit-Weight (Radix) Correction

1.5b MDAC residue nonlinearity

radix error: needs multiplication segmental offset: addition only

Nonlinear MDAC Equation

Analog representation:

$$\mathbf{V}_{j} = \left(\mathbf{d}_{j,1} \cdot \frac{\mathbf{C}_{1}}{\sum \mathbf{C}} + \mathbf{d}_{j,2} \cdot \frac{\mathbf{C}_{2}}{\sum \mathbf{C}} + \mathbf{d}_{j,3} \cdot \frac{\mathbf{C}_{3}}{\sum \mathbf{C}}\right) \cdot \mathbf{V}_{r} + \mathbf{V}_{j+1} \cdot \frac{\mathbf{C}_{4} + \sum \mathbf{C} / \mathbf{A} \left(\mathbf{V}_{j+1}\right)}{\sum \mathbf{C}}$$

Normalized analog representation:

$$\frac{\mathbf{V}_{j}}{\mathbf{V}_{r}} = \left(\mathbf{d}_{j,1} \cdot \frac{\mathbf{C}_{1}}{\sum \mathbf{C}} + \mathbf{d}_{j,2} \cdot \frac{\mathbf{C}_{2}}{\sum \mathbf{C}} + \mathbf{d}_{j,3} \cdot \frac{\mathbf{C}_{3}}{\sum \mathbf{C}}\right) + \frac{\mathbf{V}_{j+1}}{\mathbf{V}_{r}} \cdot \frac{\mathbf{C}_{4} + \sum \mathbf{C} / \mathbf{A} (\mathbf{V}_{j+1})}{\sum \mathbf{C}}$$

Digital representation:

$$\stackrel{\mathsf{D}_{j} = \left(\mathsf{d}_{j,1} \cdot \beta_{j,1} + \mathsf{d}_{j,2} \cdot \beta_{j,2} + \mathsf{d}_{j,3} \cdot \beta_{j,3}\right) + f\left(\mathsf{D}_{j+1}\right) }{\approx \sum_{k} \mathsf{d}_{j,k} \cdot \beta_{j,k} + \sum_{m} \mathsf{D}_{j+1}^{m} \cdot \alpha_{j,m}} \quad \text{ error parameters: } \{ \alpha_{j,m}, \beta_{j,k} \}$$

Let's push this approach...

Correcting nonlinearity:

Give me a place to stand on, and I will move the Earth...

Archimedes, 200 BC

A few words on nonlinear correction

- Memoryless polynomial computation is efficient
 - A few coefficients fits/predicts full-range nonlinearity (requiring digital multipliers and adders mostly)
 - Caveat: coefficients depend on signal statistics!
 - Caveat: coefficients depend on PVT variations!
- Piecewise-linear or lookup table can be useful
 - Memory, digital power, and cost
 - Complexity and convergence time (esp. tracking speed in background mode)

Solution needs to be practical after all...

Error-Parameter Identification

Foreground Calibration

- Foreground calibration
 - Test signal injected at input with normal conversion stopped
 - Often executed at system power-up
 - Incapable of tracking ambient variations
- Pseudo-background calibration
 - Skip-and-fill technique (Ref. [2])
 - Queue-base technique (Ref. [3])

Background Calibration (Recent Trend)

- Parameter extraction w/ PRBS (1b) injection
 - Sub-DAC injection (DAC dithering)
 - Sub-ADC injection (comparator dithering)
 - Input injection (Independent Component Analysis)
- Parameter extraction w/ two-ADC equalization
 - Reference-ADC equalization (training sequence)
 - Split-ADC equalization (blind)
 - Offset double conversion (ODC) (blind, single ADC)

Model parameter extraction is what the game is all about...
Background Calibration (Recent Trend)

Lewis (03), Chiu (04), McNeill (05), et al.

Temes (98, 00), Lewis (98), Galton (00), et al.

Digital Background Calibration Techniques

Method	Parameter	Test signal	Injection point	Reference [†]
DNC + GEC	$\{ \beta_{j,k}, \alpha_{j,m} \}$	multi PRBS	sub-DAC	[7–12]
Split capacitor	$\{\Delta_j\}$	1 PRBS	sub-DAC	[13, 14]
Sigdep. dither	{ γ _j }	1 PRBS	sub-DAC	[15]
GEC + SA	{ γ _j }	2 PRBS	sub-ADC	[16, 17]
Statistics	{ α _{j,m} }	1 PRBS	sub-ADC	[18, 19]
Fast GEC	{ γ _j }	1 PRBS	sub-ADC	[20]
ICA	$\{ \gamma_{j} \}, \{ \alpha_{j,m} \}$	1 PRBS	input	[21–23]
Ref. ADC	$\{ \beta_{j,k}, \alpha_{j,m} \}$	n/a	n/a	[24–27]
Virtual ADC	{ β _{j,k} , α _{j,m} }	offset	sub-DAC	[28, 29]
Split ADC	{ a _{j,m} }	n/a	n/a	[30, 31]
ODC	{ γ _j }	offset	input	[32, 33]

[†]References are furnished at the end of the slides

PRBS Injection Techniques

Comparison of PRBS Injection Techniques

Sub-DAC injection

- needs to be removed in digital output
- higher sub-DAC resolution (injection and DAC matching req'd)
- can work with quiet input

• Sub-ADC injection

- considered as dynamic comparator offset, no removal needed
- higher sub-ADC resolution (injection and ADC matching not req'd)
- works only with busy input

• Direct input injection

- needs to be removed in digital output
- No impact on sub-ADC or sub-DAC resolution
- works only with busy input

Sub-DAC Injection – residue gain correction

- In steady state, analog gain (G_1) and digital gain (G_1^{-1}) cancel exactly
- $k \le \frac{1}{4}$ to avoid overflow in residue output, DAC adds 2 bits minimum
- Injection bit scaling factor (2^{-k}) must match to the sub-DAC unit elements

Sub-DAC Injection – residue gain correction

- In steady state, analog gain (G_1) and digital gain (G_1^{-1}) cancel exactly
- $k \le \frac{1}{4}$ to avoid overflow in residue output, DAC adds 2 bits minimum
- Injection bit scaling factor (2^{-k}) must match to the sub-DAC unit elements

Sub-DAC Injection – signal-dependent dither

PRBS Injection Table

V _j (V _R)	T = +1	T = -1
-1 → -¾	0	0
$-\frac{3}{8} \rightarrow -\frac{1}{8}$	0	V _R
$-\frac{1}{8} \rightarrow \frac{1}{8}$	-1⁄2 V _R	1⁄2 V _R
$\frac{1}{8} \rightarrow \frac{3}{8}$	-V _R	0
$^{3}\!\!/_{8} \rightarrow 1$	0	0

- PRBS only injected when input falls within the shaded region
- Extra comparator thresholds needed to instrument the SDD

Sub-ADC Injection – comparator dither

- In steady state, analog gain (G_1) and digital gain (G_1^{-1}) cancel exactly
- $k \le \frac{1}{4}$ to avoid overflow in residue output
- No need to match injection bit scaling factor (2^{-k}) to the sub-ADC thresholds

Sub-ADC Injection – comparator dither

- In steady state, analog gain (G_1) and digital gain (G_1^{-1}) cancel exactly
- $k \le \frac{1}{4}$ to avoid overflow in residue output
- No need to match injection bit scaling factor (2^{-k}) to the sub-ADC thresholds

Internal Redundancy Revisited

- Input falling in shaded region randomly sees one of two RTF's → dithering
- Decision threshold needs not to be accurate or matched to each other
- <u>Digitization outcome is independent of PRBS when ADC is ideal !!</u>

Inter-stage gain error identification

Segmental offset: $D_1 = \frac{1}{4} (d_1 + d_1 \cdot \delta_1) + \frac{1}{8} d_2 + \frac{1}{16} d_3 + \dots$

If $V_1 \in \{ \text{region 1} \}$ and T = +1, $D_1 = D_{\text{ideal}}$; if T = -1, $D_1 = D_{\text{ideal}} - \delta_1$ If $V_1 \in \{ \text{region 2} \}$ and T = +1, $D_1 = D_{\text{ideal}} + \delta_1$; if T = -1, $D_1 = D_{\text{ideal}}$

MWSCAS, 8/5/12

Inter-stage gain error identification

Calculating correlation:

$$\begin{split} \overline{D_1 \cdot T} &= \frac{1}{2} \Big[\overline{D_{ideal}} - (\overline{D_{ideal}} - \delta_1) \Big] \cdot \Pr\left(V_1 \in \{\text{region 1}\}\right) + \frac{1}{2} \Big[(\overline{D_{ideal}} + \delta_1) - \overline{D_{ideal}} \Big] \cdot \Pr\left(V_1 \in \{\text{region 2}\}\right) \\ &= \frac{1}{2} \delta_1 \cdot \Pr\left(V_1 \in \{\text{region 1}\}\right) + \frac{1}{2} \delta_1 \cdot \Pr\left(V_1 \in \{\text{region 2}\}\right) \\ &= \frac{1}{2} \delta_1 \cdot \Pr\left(V_1 \in \{\text{region 1or 2}\}\right) \end{split}$$

LMS learning:

- Correlation reveals information about segmental offset
- Exact size of shaded region is not important (only affects Pr(.))
- Key observation: if ADC is ideal, D₁ must be uncorrelated to T

Direct Input Injection

- Algorithm works reliant on the independence b/t input and T, a stronger statement than simply being "uncorrelated"
- Multiple parameter extraction is possible with Independent Component Analysis (ICA)

Equalization Techniques

Comparison of Equalization Techniques

Reference-ADC equalization

- Slow-Fast two-ADC architecture to accomplish accuracy and throughput simultaneously using adaptive equalization
- Two (different) ADC's needed, subject to skew error without SHA

• Split-ADC equalization

- Two almost identical ADC's employed for blind equalization
- Two ADC's needed, subject to skew error without SHA

• Offset double conversion (ODC)

- Self-equalization by digitizing every sample twice with opposite DC offsets injected to the input
- Single ADC with modified timing in background mode
- Conversion throughput halved in background mode

Reference-ADC Equalization

- Concept inspired by adaptive equalization in digital comm. receivers
- Divide-and-conquer approach to achieve analog speed and accuracy

EQZ of Time-Interleaved ADC Array

All paths are aligned to the unique ref. ADC after equalization

600MS/s TI-ADC Array Achieving >60dB SFDR

Performance Comparison (@ publication time)

CMOS ADC's	Process	Speed [MS/s]	SFDR [dB]	FoM [fJ/step]
ISSCC'06	0.13µm	600	43	220
ISSCC'08	0.13µm	1250	48	480
VLSI'08	65nm	800	58	280
This work ISSCC'09	0.13µm	600	65	210

Die photo

Ref. [35]

ADC Array EQZ – Measured Linearity (#3)

 $(f_s = 600MS/s, f_{in} = 1.8MHz, A_{in} = 0.9FS, 100k samples)$

ADC Array EQZ – Measured Linearity (array)

 $(f_s = 600MS/s, f_{in} = 1.8MHz, A_{in} = 0.9FS, 100k samples)$

ADC Array EQZ – Measured Spectrum

 $(f_s = 600MS/s, f_{in} = 7.8MHz, A_{in} = 0.9FS, 16k samples)$

ADC Array EQZ – Convergence Speed

Split-ADC Equalization

- Blind equalization w/o reference possible by offsetting the RTF's
- Fast convergence due to zero-forcing equalization (vs. de-correlation)

Split-ADC Equalization – Zero Forcing

Error observation

Radix correction

Zero-forcing EQZ

Self-Equalization – Offset Double Conversion

- Every sample is converted twice w/ opposite offsets injected (ODC)
- Self-equalization, hardware efficient, no skew issue, half throughput
- Simultaneous multiple parameter learning, zero-forcing, very fast

The Return of SAR ADC

- Single ZX comparator \rightarrow insensitive to offset and nonlinearity
- All-switching analog architecture \rightarrow scaling friendly, low power and area
- Op-amp free \rightarrow rail-to-rail swing, inherently linear operation

Binary Search

- Single ZX comparator \rightarrow insensitive to offset and nonlinearity
- All-switching analog architecture \rightarrow scaling friendly, low power and area
- Op-amp free \rightarrow rail-to-rail swing, inherently linear operation

SAR Conversion Redundancy

Sub-Binary Bit-Weight Correction

MWSCAS, 8/5/12

Is the transfer curve shift-invariant?

Is the transfer curve shift-invariant?

Is the transfer curve shift-invariant?

Transfer curve away from bit transitions is linear

Transfer curve at bit transitions is nonlinear

- Shift-invariant <u>ONLY</u> when the transfer curve is completely linear !!
- Non-constant difference b/t D₊ and D₋ reveals bit weight information

Offset Double Conversion for SAR

- Offset double conversion (ODC) enables self-equalization
- <u>ALL</u> bit weights { w_i } are learned <u>simultaneously</u> !!
12b SAR ADC Prototype

Ref. [32]

Simplicity, scalability, and efficiency

Die Photo (0.13µm CMOS, 0.06mm²)

Ref. [32]

Measured Performance @ 12b, 22.5MS/s

Convergence Speed

22000 samples @ 22.5 MS/s ≈ 1 ms

Comparison with 12b ADC's

MWSCAS, 8/5/12

Convergence Time and Tracking Speed

Speed Concerns for Background Calibration

- Component aging, ambient variations, e.g., voltage, temperature, require different tracking speed for background calibration algorithms
- Amplifier nonlinearity is very sensitive to variations and signal statistics → needs special attention
- Reported speed performance varies. In general, equalization outperforms PRBS injection by large margin

Convergence Time

ATTENTION

To maximize connection speed, leave this modem on for 10 days after DSL installation is complete

Please Note:

•You can use your DSL service during this time

 It is not necessary to leave your computer on, only the modem

Convergence Time

Convergence/tracking speed determines the sensitivity, testability, and ultimately practicality of a treatment...

Why Dithering is Slow?

Clean observation through correlation process requires ~2^{2N} samples

Why Equalization is Fast?

Zero-forcing \rightarrow e drops to 0 with help of "training sequence"

Conclusion Remarks

Thank you for your attendance!

Bibliography

- 1. R. H. Walden, "Analog-to-digital converter survey and analysis," IEEE JSAC, issue 4, 1999.
- 2. S.-U. Kwak, B.-S. Song, and K. Bacrania, "A 15-b 5-Msamples/s low spurious CMOS ADC," JSSC, Dec. 1997.
- 3. E. Erdogan et al., "A 12-b digital-background-calibrated algorithmic ADC with -90-dB THD," JSSC, Dec. 1999.
- 4. T. Sun, A. Wiesbauer, and G. C. Temes, "Adaptive compensation of analog circuit imperfections for cascaded delta-sigma ADCs," in ISCAS 1998.
- 5. P. Kiss et al., "Adaptive digital correction of analog errors in MASH ADC's—Part II: Correction using testsignal injection," TCAS II, July 2000.
- 6. D. Fu, K. C. Dyer, S. H. Lewis, and P. J. Hurst, "A digital back-ground calibration technique for timeinterleaved analog-to-digital converters," JSSC, Dec. 1998.
- 7. I. Galton, "Digital cancellation of D/A converter noise in pipelined A/D converters," TCAS II, Mar. 2000.
- 8. P. C. Yu et al., "A 14b 40MS/s pipelined ADC with DFCA," in ISSCC 2001.
- 9. E. J. Siragusa and I. Galton, "A digitally enhanced 1.8V 15b 40MS/s CMOS pipelined ADC," in ISSCC 2004.
- 10. A. Panigada and I. Galton, "Digital background correction of harmonic distortion in pipelined ADCs," TCAS I, Sept. 2006.
- 11. A. Panigada and I. Galton, "A 130mW 100MS/s pipelined ADC with 69dB SNDR enabled by digital harmonic distortion correction," in ISSCC 2009.
- 12. K. Nair and R. Harjani, "A 96dB SFDR 50MS/s digitally enhanced CMOS pipeline A/D converter," in ISSCC 2004.
- 13. H.-C. Liu, Z.-M. Lee, and J.-T. Wu, "A 15b 20MS/s CMOS pipelined ADC with digital background calibration," in ISSCC 2004.

Bibliography

- 14. J.-L. Fan, C.-Y. Wang, and J.-T. Wu, "A robust and fast digital background calibration technique for pipelined ADCs," TCAS I, June 2007.
- 15. Y.-S. Shu and B.-S. Song, "A 15b linear, 20MS/s, 1.5b/stage pipelined ADC digitally calibrated with signaldependent dithering," in VLSI 2006.
- 16. J. Li and U.-K. Moon, "Background calibration techniques for multistage pipelined ADC's with digital redundancy," TCAS II, Sept. 2003.
- 17. J. Li et al., "0.9V 12mW 2MSPS algorithmic ADC with 81dB SFDR," in VLSI 2004.
- 18. B. Murmann et al., "A 12b 75MS/s pipelined ADC using open- loop residue amplification," in ISSCC 2003.
- 19. J. Keane et al., "Background interstage gain calibration technique for pipelined ADCs," TCAS I, Jan. 2005.
- 20. R. Massolini, G. Cesura, and R. Castello, "A fully digital fast convergence algorithm for nonlinearity correction in multistage ADC," TCAS II, May 2006.
- 21. Y. Chiu, "A framework of digital-domain background calibration of multi-step ADC using pseudorandom test signal injection," in SampTA 2011.
- 22. S.-C. Lee, B. Elies, and Y. Chiu, "An 85dB SFDR 67dB SNDR 80SR 240MS/s SD ADC with nonlinear memory error calibration," in VLSI 2012.
- 23. W. Liu, P. Huang, and Y. Chiu, "A 12-bit 50-MS/s 3.3-mW SAR ADC with background digital calibration," in CICC 2012.
- 24. X. Wang et al., "A 12-bit 20-MS/s pipelined ADC with nested digital background calibration," in CICC 2003.
- 25. Y. Chiu et al., "Least mean square adaptive digital background calibration of pipelined analog-to-digital converters," TCAS I, Jan. 2004.
- 26. C. Tsang et al., "Background ADC calibration in digital domain," in CICC 2008.
- 27. Y. Chiu, "Equalization techniques for nonlinear analog circuits," IEEE Comm. Mag., Apr. 2011.

Bibliography

- 28. B. Peng et al., "A virtual-ADC digital background calibration technique for multistage A/D conversion," TCAS II, Nov. 2010.
- 29. B. Peng et al., "A 48-mW, 12-bit, 150-MS/s pipelined ADC with digital calibration in 65nm CMOS," in CICC 2011.
- 30. J. McNeill et al., "Split ADC architecture for deterministic digital background calibration of a 16b 1MS/s ADC," in ISSCC 2005.
- 31. J. McNeill et al., "Split-ADC digital background correction of open-loop residue amplifier nonlinearity errors in a 14b pipeline ADC," in ISCAS 2007.
- 32. W. Liu, P. Huang, and Y. Chiu, "A 12bit 22.5/45MS/s 3.0mW 0.059mm2 CMOS SAR ADC achieving over 90dB SFDR," in ISSCC 2010.
- 33. B. Peng et al., "An offset double conversion technique for digital calibration of pipelined ADCs," TCAS II, Dec. 2010.
- 34. H. S. Fetterman et al., "CMOS pipelined ADC employing dither to improve linearity," in CICC 1999.
- 35. W. Liu et al., "A 600MS/s 30mW 0.13µm CMOS ADC array achieving over 60dB SFDR with adaptive digital equalization," in ISSCC 2009.