
Erik Jonsson School of Engineering & Computer Science

Recent Advances in Multistep 
Nyquist ADC’s

Yun Chiu

Erik Jonsson Distinguished Professor
University of Texas at Dallas



MWSCAS, 8/5/12 - 2 - © Y. Chiu

Performance vs. Energy 
Efficiency
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Walden Figure-of-Merit (FoM) for ADC
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2 BW 2 Conversion - Step

• P = power consumption

• ENOB = effective number of bits

• BW = min(fs/2, ERBW)

• ERBW = effective resolution BW
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Ref. [1]

FoM “measures” energy efficiency
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How to compare ADC performance?

• Higher performance with lower cost is the 
obvious criterion for comparison

– ADC performance: speed (sample rate) or 
bandwidth, resolution

– ADC cost: power consumption, die size

Q: how to define performance quantitatively?
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Definition of PERFORMANCE

• Bandwidth (or speed) performance
– BW = min(fs/2, ERBW)

• Resolution (or precision) performance
– Effective number of bits (ENOB), or equivalently 

effective number of steps (ENOS) = 2ENOB

• Separately, it is easy. But how to combine the 
two in one merit? Just take the product?
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Definition of PERFORMANCE

• 2×BW  2×Power, 2×Area (same ENOS)             
Power, area scale linearly with bandwidth

• 2×ENOS  4×Power, 4×Area (same BW)             
Power, area scale quadratically with precision

(for thermal noise or matching limited design)



 2

Power, Area    BW,
Power, Area    ENOS
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Definition of PERFORMANCE

 
   

2
2

ENOB

Performance = 2 BW ENOS
Hz Step

= 2 BW 4

  2Power & Area   BW,  ENOS

Definition:

2 BW = fsample  ENOB
1010log 4 = SNR

This definition avoids penalizing high-SNR works as Walden FoM does
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Definition of ENERGY EFFICIENCY

  
 
 

 

2

2

ENOB

PEnergy Efficiency = J2 BW ENOS
P Step

2 BW 4

Definition:



  
 

ENOB
ENOB

Performance Energy Efficiency
P= 2 BW 4 =

2 BW 4
Power

Note:

  2Power & Area   BW,  ENOS
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Performance–Efficiency (PE) Chart

Energy Efficiency = Power/(2·BW·4ENOB)
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Pipeline ADC PE Chart (< 2005)
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Pipeline ADC PE Chart (< 2010)
ISSCC & VLSI data
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Pipeline ADC PE Chart(< 2012)
ISSCC & VLSI data

100mW

1W

10mW

1mW
100μW10μW1μW

Efficiency [J/Step2]

Pe
rf

or
m

an
ce

[H
z·

S
te

p2 ]



MWSCAS, 8/5/12 - 13 - © Y. Chiu

SAR ADC PE Chart (< 2005)
ISSCC & VLSI data
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SAR ADC PE Chart (< 2010)
ISSCC & VLSI data
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SAR ADC PE Chart (< 2012)
ISSCC & VLSI data
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Nyquist ADC PE Chart (mid 90s – 2011)
ISSCC & VLSI data

100mW

1W

10mW

1mW
100μW10μW1μW

Efficiency [J/Step2]

Pe
rf

or
m

an
ce

[H
z·

S
te

p2 ]



MWSCAS, 8/5/12 - 17 - © Y. Chiu

Nyquist ADC PE Chart (mid 90s – 2011)
ISSCC & VLSI data
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Nyquist ADC PE Chart (mid 90s – 2011)
ISSCC & VLSI data
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Digital-Domain Calibration
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Digital
Computation

The Basic Idea

ADC

Unknown
System

System
Inversion

 
  

 
1o

2i

V 1- 1
βA

-C
CV

• match C1 and C2
• make βA very large

Digital soln:
• any constant C1 and C2
• any constant A is fine

Analog soln:
Switched-capacitor amplifier

Calibration = efficient digital post-processing to undo certain analog errors



MWSCAS, 8/5/12 - 21 - © Y. Chiu

Two Essential Components

1. A digital-domain technique (e.g. equation) to recover 
accurate analog information from raw digital output
– Treat analog precision or linearity only
– Neglect consequence on SNR

2. An algorithm to identify the error parameters
– Foreground vs. Background approaches

 
  

 
1

2
CL

1C
C

A 1-
βA

- = #



MWSCAS, 8/5/12 - 22 - © Y. Chiu

Example – Multistage Pipeline ADC

• Input coarsely quantized (< 5 bits)
• Residue produced and passed on

2.5b MDAC:

V2
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0
-VR
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Multiplying DAC Error Mechanism

2.5b MDAC

dj -3 -2 -1 0 1 2 3

dj,1 -1 -1 -1 -1 -1 0 1

dj,2 -1 -1 -1 0 1 1 1

dj,3 -1 0 1 1 1 1 1

DAC bit-encoding scheme

dj = dj,1 + dj,2 + dj,3

• Seven decision levels  ENOB ≈ log27 = 2.807
• Residue transfer function Vj (Vj+1) can be derived w/ charge conservation
• Capacitor mismatch and amplifier gain error are dominant error sources

Vj+1

Vj

0
-VR

VR

Encoder

Φ1e

A

Φ2

VR
6

VR
1

6 CMP’s

...

Φ1 C4

Φ1 C3

Φ2

C2

C1

Φ1

Φ1

Φ2

Φ2

dj
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Residue Transfer Function (2.5b Pipeline)

Only half of the internal dynamic range is used under ideal condition

overflow
range

underflow
range

normal
range
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What happens with comparator offset?

overflow
range

underflow
range

normal
range
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Internal Redundancy

Comparator and amplifier offsets are tolerated by internal redundancy

overflow
range

underflow
range

normal
range
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Redundancy in Subranging ADC
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Equation for MDAC RTF Correction

      
 


   j,1 j,2 j,3j r j+

31 2
1

4CC C C + C A+ += +C C CV V Vd d
C

d

 ideal residue function

     
 


   j,1 j,2 j,3

3j j+1

r

1 2

r

4CC C C + C A+ += +C C C
d dV V

V V C
d

    

 
j,1 j,2 j,j 3 j

j,

,1 j,2 j,3j j+1

j,k j+k j
k

1

β + β + β= + α

=

d d dD D

β D+ αd

Digital representation (EC EQ):

     j j
j,1 j,2 j,

+1 j+1

r r
3 j

r

V V V
V V

1 1 1 1+ += + = +
V

d d
4 4

d d
4 4

Analog residue function:

Normalized residue function:

 error parameters:  { αj, βj,k }
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Bit-Weight (Radix) Correction

    ...

...

     

  

1 in

j j j+1 j+1 j+2 j+2 j+1 j j-1

j j+1 j+j j+1 j+22

D =D

=...+ d β + d β + d β +... α α α

=...+d +d +d +γ γ γ  weighted sum of ALL bits!
(bit weight or radix error)

 segmental offset

For 1b or 1.5b MDAC:

     
     

...

...

  

1 in
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Bit-Weight (Radix) Correction

Vi-VR VR

Do

Vi-VR VR

Do

radix error:
needs multiplication

segmental offset:
addition only

d1=-1 d1=1d1=0 d1=-1 d1=1d1=0 d1=-1 d1=1d1=0

1.5b MDAC
residue nonlinearity
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Nonlinear MDAC Equation
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Digital representation:

Analog representation:

Normalized analog representation:

 error parameters:  { αj,m, βj,k }
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Let’s push this approach…

-70 dBFS

Give me a place to stand on, 
and I will move the Earth…

Corrected w/ 9th-order power series

LDrawn

0.15μm

VDD

1.2V

Correcting nonlinearity:

Archimedes, 200 BC
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A few words on nonlinear correction

• Memoryless polynomial computation is efficient
– A few coefficients fits/predicts full-range nonlinearity 

(requiring digital multipliers and adders mostly)
– Caveat: coefficients depend on signal statistics!
– Caveat: coefficients depend on PVT variations!

• Piecewise-linear or lookup table can be useful
– Memory, digital power, and cost
– Complexity and convergence time (esp. tracking speed in 

background mode)

Solution needs to be practical after all…
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Error-Parameter Identification



MWSCAS, 8/5/12 - 35 - © Y. Chiu

Foreground Calibration

• Foreground calibration
– Test signal injected at input with normal conversion stopped
– Often executed at system power-up
– Incapable of tracking ambient variations

• Pseudo-background calibration
– Skip-and-fill technique (Ref. [2])
– Queue-base technique (Ref. [3])
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Background Calibration (Recent Trend)

• Parameter extraction w/ PRBS (1b) injection
– Sub-DAC injection (DAC dithering)
– Sub-ADC injection (comparator dithering)
– Input injection (Independent Component Analysis)

• Parameter extraction w/ two-ADC equalization
– Reference-ADC equalization (training sequence)
– Split-ADC equalization (blind)
– Offset double conversion (ODC) (blind, single ADC)

Model parameter extraction is what the game is all about…
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Background Calibration (Recent Trend)

ADC2 x2(n) y2(n)

e(n)Vin

Lewis (03), Chiu (04), McNeill (05), et al.

ADC Adaptive 
Digital PP

x(n)

y(n)
e(n)

t(n)

Vin

Temes (98, 00), Lewis (98), Galton (00), et al.

Two-ADC
equalization

PRBS injection
(Dither)

x1(n)

Adaptive 
Digital PP

ADC1
Adaptive 
Digital PP

y1(n)
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Digital Background Calibration Techniques

Method Parameter Test signal Injection point Reference†

DNC + GEC { βj,k, αj,m } multi PRBS sub-DAC [7–12]

Split capacitor { Δj } 1 PRBS sub-DAC [13, 14]

Sig.-dep. dither { γj } 1 PRBS sub-DAC [15]

GEC + SA { γj } 2 PRBS sub-ADC [16, 17]

Statistics { αj,m } 1 PRBS sub-ADC [18, 19]

Fast GEC { γj } 1 PRBS sub-ADC [20]

ICA { γj }, { αj,m } 1 PRBS input [21–23]

Ref. ADC { βj,k, αj,m } n/a n/a [24–27]

Virtual ADC { βj,k, αj,m } offset sub-DAC [28, 29]

Split ADC { αj,m } n/a n/a [30, 31]

ODC { γj } offset input [32, 33]

† References are furnished at the end of the slides
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PRBS Injection Techniques
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Comparison of PRBS Injection Techniques

• Sub-DAC injection
– needs to be removed in digital output
– higher sub-DAC resolution (injection and DAC matching req’d)
– can work with quiet input

• Sub-ADC injection
– considered as dynamic comparator offset, no removal needed
– higher sub-ADC resolution (injection and ADC matching not req’d)
– works only with busy input

• Direct input injection
– needs to be removed in digital output
– No impact on sub-ADC or sub-DAC resolution
– works only with busy input
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2D

Sub-DAC Injection – residue gain correction

Converge@

 2D T = 0

• In steady state, analog gain (G1) and digital gain (G1
-1) cancel exactly

• k ≤ ¼ to avoid overflow in residue output, DAC adds 2 bits minimum
• Injection bit scaling factor (2-k) must match to the sub-DAC unit elements
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2D

Sub-DAC Injection – residue gain correction

• In steady state, analog gain (G1) and digital gain (G1
-1) cancel exactly

• k ≤ ¼ to avoid overflow in residue output, DAC adds 2 bits minimum
• Injection bit scaling factor (2-k) must match to the sub-DAC unit elements

Converge@

 2D T = 0

-VR/2

0

d1=1 d1=2

-VR

VR/2

VR

¼ bit
½ bit

...

...

typ. k = 2

residue
path
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Sub-DAC Injection – signal-dependent dither

Vj (VR) T = +1 T = -1

-1  -⅜ 0 0

-⅜ -⅛ 0 VR

-⅛ ⅛ -½ VR ½ VR

⅛ ⅜ -VR 0

⅜ 1 0 0

PRBS Injection Table

• PRBS only injected when input falls within the shaded region
• Extra comparator thresholds needed to instrument the SDD
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Sub-ADC Injection – comparator dither

• In steady state, analog gain (G1) and digital gain (G1
-1) cancel exactly

• k ≤ ¼ to avoid overflow in residue output
• No need to match injection bit scaling factor (2-k) to the sub-ADC thresholds

Converge@

1D T = 0
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Sub-ADC Injection – comparator dither

• In steady state, analog gain (G1) and digital gain (G1
-1) cancel exactly

• k ≤ ¼ to avoid overflow in residue output
• No need to match injection bit scaling factor (2-k) to the sub-ADC thresholds

Converge@

residue
path

1D T = 0
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Internal Redundancy Revisited

Ref. [34]

• Input falling in shaded region randomly sees one of two RTF’s  dithering
• Decision threshold needs not to be accurate or matched to each other
• Digitization outcome is independent of PRBS when ADC is ideal !!
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Inter-stage gain error identification

1 1 ideal 1 ideal 1If V { region 1 }  and  T = +1, D =D ; if T = -1, D =D -δ

 1 2 31 1 1
1 1 1Segmental offset : D = + d + d +...d +d δ
4 8 16

 

1 1 ideal 1 1 idealIf V { region 2}  and  T = +1, D =D +δ ; if T = -1, D =D
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Inter-stage gain error identification

       1 1 1δ =δ +μ D Tn+1 n n n

       

   

 

           

   

 

1 1 1ideal idealideal 1 ideal 1

1 11 1

1 1

1 1D T = Pr V { region 1 } Pr V { region 2 }D - -DD -δ D +δ
2 2
1 1= δ Pr δ PrV { region 1 } V { region 2 }
2 2
1= δ Pr V { region 1 or 2 }
2

   1 1D T 0δ  removed

Calculating correlation:

LMS learning:

• Correlation reveals information about segmental offset
• Exact size of shaded region is not important (only affects Pr(.))
• Key observation:  if ADC is ideal, D1 must be uncorrelated to T
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Direct Input Injection

• Algorithm works reliant on the independence b/t input and T, a stronger statement 
than simply being “uncorrelated”

• Multiple parameter extraction is possible with Independent Component Analysis (ICA)
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Equalization Techniques
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Comparison of Equalization Techniques

• Reference-ADC equalization
– Slow-Fast two-ADC architecture to accomplish accuracy and throughput 

simultaneously using adaptive equalization
– Two (different) ADC’s needed, subject to skew error without SHA

• Split-ADC equalization
– Two almost identical ADC’s employed for blind equalization
– Two ADC’s needed, subject to skew error without SHA

• Offset double conversion (ODC)
– Self-equalization by digitizing every sample twice with opposite DC offsets 

injected to the input
– Single ADC with modified timing in background mode
– Conversion throughput halved in background mode
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Reference-ADC Equalization

• Concept inspired by adaptive equalization in digital comm. receivers

• Divide-and-conquer approach to achieve analog speed and accuracy
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EQZ of Time-Interleaved ADC Array

All paths are aligned to the unique ref. ADC after equalization
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Digital
Cal.
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600MS/s TI-ADC Array Achieving >60dB SFDR

Performance Comparison 
(@ publication time)

CMOS 
ADC’s Process Speed

[MS/s]
SFDR
[dB]

FoM
[fJ/step]

ISSCC’06 0.13µm 600 43 220

ISSCC’08 0.13µm 1250 48 480

VLSI’08 65nm 800 58 280

This work
ISSCC’09 0.13µm 600 65 210

Die photo Ref. [35]
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ADC Array EQZ – Measured Linearity (#3)
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(fs = 600MS/s, fin = 1.8MHz, Ain = 0.9FS, 100k samples)
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ADC Array EQZ – Measured Linearity (array)
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Split-ADC Equalization

Vi

Vo

ADCA

Vi

Vo

ADCB

• Blind equalization w/o reference possible by offsetting the RTF’s

• Fast convergence due to zero-forcing equalization (vs. de-correlation)
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Split-ADC Equalization – Zero Forcing

Radix correction Zero-forcing EQZError observation

ε
ε = dA−dB
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Self-Equalization – Offset Double Conversion

• Every sample is converted twice w/ opposite offsets injected (ODC)

• Self-equalization, hardware efficient, no skew issue, half throughput

• Simultaneous multiple parameter learning, zero-forcing, very fast

Digital
Cal.
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• Single ZX comparator  insensitive to offset and nonlinearity

• All-switching analog architecture  scaling friendly, low power and area

• Op-amp free  rail-to-rail swing, inherently linear operation

The Return of SAR ADC

VFS = 2VR
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• Single ZX comparator  insensitive to offset and nonlinearity

• All-switching analog architecture  scaling friendly, low power and area

• Op-amp free  rail-to-rail swing, inherently linear operation

Binary Search

VFS = 2VR

1 0 0 00 1 1 1…

If VX > 0, Dj = 1;
o.w., Dj = 0.
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> <=

Binary
(no redundancy)

Super-binary
(no redundancy)

Sub-binary
(redundancy)

SAR Conversion Redundancy
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How to determine Bit Weights?

Is the transfer curve shift-invariant?
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How to determine Bit Weights?

Is the transfer curve shift-invariant?
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How to determine Bit Weights?

Is the transfer curve shift-invariant?
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How to determine Bit Weights?

Transfer curve away from bit transitions is linear

δ = 2Δ
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How to determine Bit Weights?

Transfer curve at bit transitions is nonlinear

...  1 2δ δ 2Δ
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How to determine Bit Weights?

• Shift-invariant ONLY when the transfer curve is completely linear !!

• Non-constant difference b/t D+ and D− reveals bit weight information
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Offset Double Conversion for SAR

• Offset double conversion (ODC) enables self-equalization
• ALL bit weights { wj } are learned simultaneously !!

Digital
Cal.
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12b SAR ADC Prototype

Simplicity, scalability, and efficiency
Ref. [32]
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Die Photo (0.13µm CMOS, 0.06mm2)

Ref. [32]
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Measured Performance @ 12b, 22.5MS/s
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SNDR = 60.2 dB
SFDR = 66.4 dB
THD = -61.7 dB

SNDR = 70.7 dB
SFDR = 94.6 dB
THD = -89.1 dB
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Convergence Speed
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22000 samples @ 22.5 MS/s ≈ 1 ms
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Comparison with 12b ADC’s
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46 fJ/step @ 22.5 MS/s
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Total Power: 3.0mW

@ time of publication
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Convergence Time and 
Tracking Speed
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Speed Concerns for Background Calibration

• Component aging, ambient variations, e.g., voltage, temperature,
require different tracking speed for background calibration 
algorithms

• Amplifier nonlinearity is very sensitive to variations and signal 
statistics  needs special attention

• Reported speed performance varies. In general, equalization 
outperforms PRBS injection by large margin
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Convergence Time
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Convergence/tracking speed determines the sensitivity, testability, and 
ultimately practicality of a treatment…

# Ref. Sample SFDR

1 [9] 134M 90dB

2 [18] 40M 80dB

3 [13] 268M 93dB

4 [12] 225M 96dB

5 [15] 400M 98dB

6 [30] 10k ?

7 [32] 22k 95dB

~4N

1 4
53

2

6(?)7

104 : 1
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Why Dithering is Slow?

Clean observation through correlation process requires ~22N samples

…1110010110

1D T  exhibits large fluctuation !!
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Why Equalization is Fast?

Zero-forcing → e drops to 0 with help of “training sequence”
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Conclusion Remarks

Thank you for your attendance!
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