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Motivation for Multi-Step Converters 

 Flash A/D Converters 

 Area and power consumption increase exponentially with 

 number of bits N 

 Impractical beyond 7-8 bits 

 

 Multi-step conversion-Coarse conversion followed by fine 

conversion 

 Multi-step converters 

 Subranging converters 

 

 Multi step conversion takes more time 

 Pipelining to increase sampling rate 

 

 Objective: Understand digital redundancy concept in multi-step 
converters 
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Two-step A/D Converter - Basic Operation 

 Second A/D quantizes the quantization error of first A/D converter 

 Concatenate the bits from the two A/D converters to form the final 
output 

 Also called as two-step Flash ADC 
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Two-step A/D Converter - Basic Operation 

 A/D1, DAC, and A/D2 have the same range Vref 

 Second A/D quantizes the quantization error of first A/D 

 Use a DAC and subtractor to determine residue Vq 

 Amplify Vq to full range of the second A/D 

 

 Final output n from m, k 
 A/D1 output is m (DAC output is m/2MVref ) 

 A/D2 input is at kth transition (k/2KVref ) 

 Vin = k/2KVref × 1/2M + m/2MVref 

 Vin = (2Km + k)/2M+KVref 

 

 Resolution N = M + K 
 output  n = 2Km + k   

 Concatenate the bits from the two A/D converters to form the final output 
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Two-step A/D Converter – Example with M=3, K=2 

 Second A/D quantizes the quantization error of first A/D 

 Transitions of second A/D lie between transitions of the first, creating 
finely spaced transition points for the overall A/D 
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Residue Vq 

 Vq vs. Vin: Discontinuous transfer curve 
 Location of discontinuities: Transition points of A/D1 
 Size of discontinuities: Step size of D/A 
 Slope: unity 
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Two-step A/D Converter—Ideal A/D1 

 A/D1 transitions exactly at integer multiples of Vref /2
M 

 Quantization error Vq limited to (0,Vref /2
M) 

 2MVq exactly fits the range of A/D2 
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Two-step A/D converter—M bit accurate A/D1 

 A/D1 transitions in error by up to Vref /2
M+1 (= 0.5 LSB) 

 Quantization error Vq limited to 
 (−Vref /2

M+1, 3Vref /
2M+1)—a range of Vref /2

M−1 

 2MVq overloads A/D2 
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Two-step A/D with Digital Redundancy (DR) 

 Reduce interstage gain to 2M−1 

 Add Vref /2
M+1 (0.5 LSB1) offset to keep Vq positive 

 Subtract 2K−2 from digital output to compensate for the added offset 
 Digital code in A/D2 corresponding to 0.5 LSB1 = (Vref /2

M+1)/(Vref /2
K+1)= 2K−2

 

 Overall accuracy is N = M + K − 1 bits 
 A/D1 contributes M − 1 bits 

 A/D2 contributes K bits; 1 bit redundancy 

 Output n = 2K−1m + k − 2K−2 
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Two-step A/D with DR: Ideal A/D1 Scenario 

 2M−1Vq varies from Vref/4 to 3Vref/4 

 2M−1Vq outside this range implies errors in A/D1 
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Two-step A/D with DR: M-bit accurate A/D1 

 2M−1Vq varies from 0 to Vref 

 A/D2 is not overloaded for up to 0.5 LSB errors in A/D1 

 Issue: Accurate analog addition of 0.5 LSB1 is difficult 
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Two-step A/D with DR: M-bit accurate A/D1 

 Recall that output n = 2K−1m + k − 2K−2 

 
 A/D1 Transition shifted to the left 

 m greater than its ideal value by 1 

 k lesser than its ideal value by 2K−1 

 A/D output n = 2K−1m + k − 2K−2 doesn’t change 

 

 A/D1 Transition shifted to the right 
 m lesser than its ideal value by 1 

 k greater than its ideal value by 2K−1 

 A/D output n = 2K−1m + k − 2K−2 doesn’t change 

 

 1 LSB error in m can be corrected 
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Two-step A/D with Digital Redundancy (II) 

 Use reduced interstage gain of 2M−1 

 Modification: Shift the transitions of A/D1 to the right by Vref/2
M+1 (0.5 

LSB1) to keep Vq positive 
 Eliminates analog offset addition and achieves same effect as last scheme 

 Overall accuracy is N = M + K − 1 bits; A/D1 contributes 
 M − 1 bits, A/D2 contributes K bits; 1 bit redundancy 

 Output n = 2K−1m + k, no digital subtraction needed 
 Simpler digital logic 
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Two-step A/D with DR(II)-Ideal A/D1 Scenario 

 2M−1Vq varies from 0 to 3Vref/4; Vref/4 to 3Vref/4 except the first segment 

 2M−1Vq outside this range implies errors in A/D1 



     

 

 Vishal Saxena -16- 

Two-step A/D with DR (II): M bit acc. A/D1 

 2M−1Vq varies from 0 to Vref 

 A/D2 is not overloaded for up to 0.5 LSB errors in A/D1 
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Two-step A/D with DR(II): M-bit acc. A/D1 

 Recall that output n = 2K−1m + k 

 
 A/D1 Transition shifted to the left 

 m greater than its ideal value by 1 

 k lesser than its ideal value by 2K−1 

 A/D output n = 2K−1m + k doesn’t change 

 

 A/D1 Transition shifted to the right 
 m lesser than its ideal value by 1 

 k greater than its ideal value by 2K−1 

 A/D output n = 2K−1m + k  doesn’t change 

 

 1 LSB error in m can be corrected 
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Two-step A/D with DR (III) 

 0.5 LSB (Vref /2
M−1) shifts in A/D1 transitions can be tolerated 

 If the last transition (Vref − Vref /2
M−1) shifts to the right by Vref/2

M−1, the 
transition is effectively nonexistent 
 Still the A/D output is correct 

 Remove last comparator  M bit A/D1 has 2M − 2 comparators set to 
1.5Vref/2

M, 2.5Vref/2
M, . . . ,Vref−1.5Vref/2

M 

 Reduced number of comparators 
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Two-step A/D with DEC (III)-Ideal A/D1 

 2M−1Vq varies from 0 to 3Vref/4; Vref/4 to 3Vref/4 except the first and last 
segments 

 2M−1Vq outside this range implies errors in A/D1 
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Two-step A/D with DR (III): M bit acc. A/D1 

 2M−1Vq varies from 0 to Vref 

 A/D2 is not overloaded for up to 0.5 LSB errors in A/D1 
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Two-step A/D with DR(III): M-bit acc. A/D1 

 Recall that output n = 2K−1m + k 

 
 A/D1 Transition shifted to the left 

 m greater than its ideal value by 1 

 k lesser than its ideal value by 2K−1 

 A/D output n = 2K−1m + k doesn’t change 

 

 A/D1 Transition shifted to the right 
 m lesser than its ideal value by 1 

 k greater than its ideal value by 2K−1 

 A/D output n = 2K−1m + k  doesn’t change 

 

 1 LSB error in m can be corrected 
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Multi-step Converters 

 Two-step architecture can be extended to multiple steps 

 All stages except the last have their outputs digitally corrected from the 
following A/D output 

 Number of effective bits in each stage is one less than the stage A/D 
resolution 

 Accuracy of components in each stage depends on the accuracy of the 
A/D converter following it 

 Accuracy requirements less stringent down the pipeline, but optimizing 
every stage separately increases design effort 

 Pipelined operation to obtain high sampling rates 

 Last stage is not digitally corrected 
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Multi-step or Pipelined A/D Converter 

 4,4,4,3 bits for an effective resolution of 12 bits 

 3 effective bits per stage 

 Digital outputs appropriately delayed (by 2K-1) before addition 
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Multi-step Converter Tradeoffs 

 Large number of stages, fewer bits per stage 
 Fewer comparators, low accuracy-lower power consumption 

 Larger number of amplifiers-power consumption increases 

 Larger latency 

 Fewer stages, more bits per stage 
 More comparators, higher accuracy designs 

 Smaller number of amplifiers-lower power consumption 

 Smaller latency 

 Typically 3-4 bits per stage easy to design 
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1.5b/Stage Pipelined A/D Converter 

 To resolve 1 effective bit per stage, you need 22 − 2, i.e. two 
comparators per stage 

 Two comparators result in a 1.5 bit conversion (3 levels) 

 Using two comparators instead of three (required for a 2 bit converter in 
each stage) results in significant savings 
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1.5b/Stage Pipelined A/D Converter 

 Digital outputs appropriately delayed (by 2N-2) before addition 

 Note the 1-bit overlap when CN is added to DN-1 
 Use half adders for stages 2 to N 
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SC Amplifiers  

Vout = -(C1/C2)Vin Vout = +(C1/C2)Vin 
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SC Realization (I) of DAC and Amplifier  

 Pipelined A/D needs DAC, subtractor, and amplifier 

 Vin sampled on C in Ф2 (positive gain) 

 Vref sampled on m/2MC in Ф1 (negative gain). 

 At the end of Ф1, Vout = 2M−1 (Vin − m/2MVref) 
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SC Realization of DAC and Amplifier  

 m/2MC realized using a switched capacitor array controlled by A/D1 
output 
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Two stage converter timing and pipelining 
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Two stage converter timing and pipelining 

 Ф1 
 S/H holds the input Vi[n] from the end of previous Ф2 

 A/D1 samples the output of S/H 
 Amplifier samples the output of S/H on C 
 Opamp is reset 

 Ф2 
 S/H tracks the input 
 A/D1 regenerates the digital value m 
 Amplifier samples Vref of S/H on m/2MC 
 Opamp output settles to the amplified residue 
 A/D2 samples the amplified residue 

 Ф2 
 A/D2 regenerates the digital value k. m, delayed by ½ clock cycle, can be 

added to this to obtain the final output 
 S/H, A/D1, Amplifier function as before, but on the next 
 sample Vi[n+1] 

 In a multistep A/D, the phase of the second stage is reversed when 
compared to the first, phase of the third stage is the same as the first, 
and so on 
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Pipelined A/D Implementation 
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Pipelined ADC Architecture 
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Concurrent Stage Operation 

 Dedicated S/H for better dynamic performance 

 Pipelined MDAC stages operate on the input and pass the scaled 
residue to the to the next stage 

 New output every clock cycle, but each stage introduces 0.5 clock cycle 
latency 



     

 

 Vishal Saxena -35- 

Data Alignment 

 

 Digital shift register aligns sub-conversion results in time  

 Digital output is taken as weighted sum of stage bits  
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Latency 
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Combining the Bits: Ideal MDAC 

 Example1: Three 2-bit stages, no redundancy  
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Combining the Bits contd. 
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Combining the Bits: With Redundancy 

 Example2: Three 2-b it stages, one bit redundancy in stages 1 and 2 
(6-bit aggregate ADC resolution) 
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Combining the Bits: With Redundancy 

 Bits overlap by the amount of redundancy 

 Need half adders for addition 
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A 1.5-Bit Stage 

• 2X gain + 3-level DAC + subtraction all integrated 

• Digital redundancy relaxes the tolerance on CMP/RA offsets 
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Timing Diagram of Pipelining 

S1 samples

S1 DAC+RA

S2 samples

S1 samples

S2 DAC+RA

S3 samples

S1 DAC+RA

S2 samples

S3 DAC+RA

S1 CMP S2 CMP
S1 CMP

S3 CMP

Φ1

Φ2

• Two-phase non-overlapping clock is typically used, with the coarse ADCs 

operating within the non-overlapping times 

• All pipelined stages operate simultaneously, increasing throughput at the 

cost of latency (what is the latency of pipeline?) 
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1.5-Bit Decoding Scheme 

b 0 1 2 

b-1 -1 0 +1 

C2 +VR 0 -VR 

-VR/4 VR/4

0

VR/2

-VR/2
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b=0 b=2b=1
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1.5b/stage Residues 

-1 -0.5 0 0.5 1
-1

0

1

s
ta

g
e
 1

 r
e
s

-1 -0.5 0 0.5 1
-1

0

1

s
ta

g
e
 2

 r
e
s

-1 -0.5 0 0.5 1
-1

0

1

s
ta

g
e
 3

 r
e
s

-1 -0.5 0 0.5 1
-1

0

1

s
ta

g
e
 4

 r
e
s

-1 -0.5 0 0.5 1
-1

0

1

s
ta

g
e
 5

 r
e
s

-1 -0.5 0 0.5 1
-1

0

1

s
ta

g
e
 6

 r
e
s

-1 -0.5 0 0.5 1
-1

0

1

s
ta

g
e
 7

 r
e
s

-1 -0.5 0 0.5 1
-1

0

1

s
ta

g
e
 8

 r
e
s

• Residues after every stage with ideal MDACs 
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A 2.5-Bit Stage 
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2.5-Bit RA Transfer Curve 

• 6 comparators + 7-level DAC are required 

• Max tolerance on comparator offset is ±VR/8 

b=1 b=3 b=5b=0 b=2 b=4 b=6

Vi

Vo

-5VR/8 VR/8

VR/2

-VR/2

0

-3VR/8 -VR/8 5VR/83VR/8-VR VR
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2.5-Bit Decoding Scheme 

b 0 1 2 3 4 5 6 

b-3 -3 -2 -1 0 +1 +2 +3 

b1 -1 -1 -1 0 +1 +1 +1 

b2 -1 -1 0 0 0 +1 +1 

b3 -1 0 0 0 0 0 +1 

C2 +VR +VR +VR 0 -VR -VR -VR 

C3 +VR +VR 0 0 0 -VR -VR 

C4 +VR 0 0 0 0 0 -VR 

• 7-level DAC, 3×3×3 = 27 permutations of potential configurations → 

multiple choices of decoding schemes! 

• Choose the scheme to minimize decoding effort, balance loading for 

reference lines, etc. 
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Design Parameters 

 Stage resolution, stage scaling factor  

 Stage redundancy  

 Thermal noise/quantization noise ratio  

 Opamp architecture  
 Opamp sharing?  

 Switch topologies  

 Comparator architecture  

 Front-end SHA vs. SHA-less design  

 Calibration approach (if needed)  

 Time interleaving?  

 Technology and technology options (e.g. capacitors)  

 

A very complex optimization problem!  
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Thermal Noise Considerations 

 Total input referred noise 
 Thermal noise + Quantization noise 

 Costly to make input thermal noise smaller than quantization noise 

 

 Example: VFS=1V, 10-bit ADC 
   

 
 Design for total input referred thermal noise 280μVrms or larger is 

SNR target allows 

 

 Total input referred thermal noise of the ADC is the sum of 
thermal noise contribution from all stages 
 How should the thermal noise (kT/C) of the stages be distributed? 

   

 
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2
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1 1
280

12 12 2

LSB
q rms

V
E V

 
   

 
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Stage Scaling 
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Stage Scaling contd. 

If we make all caps the same size, backend stages contribute 

very little noise 

• Wasteful, because Power ~ Gm ~ C 
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Stage Scaling contd. 

• How about scaling caps down by 2M=4X every stage? 

• Same amount of noise from each stage 

• All stages contribute significant noise 

• Noise from the first stage must be reduced 

• Power ~Gm and C goes up! 
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Stage Scaling contd. 

 

 

•Optimum capacitior scaling lies approximately midway between these 

two extremes  
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Stage Scaling contd. 

•Optimum capacitor scaling lies approximately midway between these 

two extremes [Cline 1996] 

•Capacitor scaling factor 2RX   

•x=1 → scaling exactly by the stage gain [Chiu 2004] 
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Optimum Stage Scaling  

•Start by assuming caps are scaled precisely by stage gain  

– E.g. for 1-bit effective stages, caps are scaled by 2 

 

 

 

 

 

 

•Refine using first pass circuit information & Excel spreadsheet  

Use estimates of OTA power, parasitics, minimum feasible sampling 

capacitance etc.  

Can develop optimization subroutines in MATLAB 
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How Many Bits per Stage? 

 Low per-stage resolution (e.g. 1-bit effective)  
 – Need many stages  

 + OTAs have small closed loop gain, large feedback factor  

• High speed  

 High per-stage resolution (e.g. 3-bit effective)  
 + Fewer stages  

 – OTAs can be power hungry, especially at high speed  

 – Significant loading from flash-ADC  

 Qualitative conclusion  
 Use low per-stage resolution for very high speed designs  

 Try higher resolution stages when power efficiency is most 
important constraint  
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Power Tradeoff with Stage Resolution  

 Power tradeoff is nearly flat! 

 ADC power varies only ~2X across different stage 
resolutions 
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Examples 

 Low power is possible for a wide range of architectures!  
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Recap 

 Choosing the "optimum" per-stage resolution and stage 
scaling scheme is a non-trivial task  
 –But – optima are shallow!  

 Quality of transistor level design and optimization is at least 
as important (if not more important than) architectural 
optimization…  

 Next, look at circuit design details  
 Assume we're trying to build a 10-bit pipeline  

• ~0.13um CMOS or smaller  

• Moderate to high-speed ~100MS/s  

• 1-bit effective/stage, using “1.5-bit” stage topology  

• Dedicated front-end SHA  
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