

Flash ADCs

Vishal Saxena, Boise State University (vishalsaxena@boisestate.edu)

Flash ADC Architecture

- Reference ladder consists of 2^N equal size resistors
- Input is compared to 2^N-1 reference voltages
 - Massive parallelism
- Very fast ADC
 architecture
- Latency = 1 T_s = $1/f_s$
- Throughput = f_s
- Complexity = 2^N

Thermometer Code

Thermometer Code

Flash ADC Challenges

- V_{DD} = 1.8 V
 - 10-bit \rightarrow 1023 comparators
- $V_{FS} = 1 V \rightarrow 1 LSB = 1 mV$
- DNL < 0.5 LSB \rightarrow V_{os} < 0.5 LSB
- 0.5 mV = 3-5 $\sigma \to \sigma$ = 0.1-0.2 mV
- 2^N-1 very large comparators
- Large area, large power consumption
- Very sensitive design
- Limited to resolutions of 4-8 bits

Flash ADC Challenges

- DNL < 0.5 LSB
- Large V_{FS} relaxes offset tolerance
- Small V_{FS} benefits conversion speed (settling, linearity of building blocks)

ADC Input Capacitance

$$\sigma^{2}\left(V_{th}\right) = \frac{A_{Vth}^{2}}{WL} \qquad C_{g} = 10 \text{ fF} / \mu m^{2}$$

- N = 6 bits \rightarrow 63 comparators
- V_{FS} = 1 V \rightarrow 1 LSB = 16 mV
- $\sigma = LSB/4 \rightarrow \sigma = 4 \text{ mV}$
- $A_{VT0} = 10 \text{ mV} \cdot \mu \text{m} \rightarrow \text{L} = 0.24 \mu \text{m},$ W = 26 μm

N (bits)	# of comp.	C _{in} (pF)
6	63	3.9
8	255	250
10	1023	??!

- Small V_{os} leads to large device sizes, hence large area and power
- Large comparator leads to large input capacitance, difficult to drive and difficult to maintain tracking bandwidth

Fully-Differential Architecture

- V_{FS} doubled
- 3-dB gain in SNR
- Better CMRR
- Noise immunity
- Input feedthrough cancelled
- C_{in} nonlinearity partially removed
- Effect of V_{cmi} diff. mitigated

Flash ADC Design Considerations

- Use a dedicated S/H (or T/H) for better dynamic performance
 - Can be avoided when using the A/D inside a $\Delta\Sigma$ loop
- Large input range for the quantizer has several benefits
 - Increased step-size (V_{LSB}) relaxes offset requirements on the comparators
 - Reduced matching requirements result in small input cap to the S/H, easier to drive
 - Reduced input cap results in smaller clock routing parasitics power savings in clock drivers
- Comparator Design
 - See comparator design slides

Flash ADC: Reference Ladder

- Differential reference ladder
- Decaps on the reference taps
 - large *RC* time-constant will not allow reference restoration after kickback noise
 - Small R will lead to power dissipation
 - Optimize RC
- Subtract references from the input in a differential manner
 - Several topologies
- Several architectures for the digital backend
 - May need to pipeline digital logic at high sampling rates >500 MS/s

Reference Generator (for V_{refp} and \overline{V}_{refm})

[Brooks 1994]

Flash ADC: Reference Subtraction

Reference Subtraction: Scheme I

- Employ reference ladder for subtraction
- Choose current (*I*) such that differential voltage drop across R = 1 V_{LSB}
- Ladder is part of the signal path
 - Comparator input cap load the resistor taps
 - Excess delay

$$A_{max} = \frac{0.5V_{dd} - \Delta V}{2}$$

Paton, S., Di Giandomenico, A., Hernandez, L., Wiesbauer, A., Potscher, T., & Clara, M. (2004). A 70-mW 300-MHz CMOS continuous-time $\Sigma\Delta$ ADC with 15-MHz bandwidth and 11 bits of resolution. *IEEE Journal of Solid State Circuits, 39*(7), 1056– 1063.

Reference Subtraction: Scheme II

- Source followers to buffer v_{in}
 - reduced swing, varies with PVT
- Ladder is part of the signal path
 - Comparator input cap load the resistor taps
 - Excess delay

Arias, J., Kiss, P., Prodanov, V., Boccuzzi, V., Banu, M., Bisbal, D., et al. (2006). A 32-mW 320-MHz continuous-time complex $\Sigma\Delta$ ADC for multi-mode wireless-LAN receivers. *IEEE Journal of Solid State Circuits*, 41(2), 339–351.

Reference Subtraction: Scheme III

- Differential difference amplifier for subtracting the reference
 - followed by a zero crossing detector
- Relaxes the impedance requirements on the ladder
- Mismatch in differential pairs and tail current sources results in comparator offset
 - current trimming (see the reference below)
- Finite BW of the amplifier causes excess delay

Mitteregger, G., Ebner, C., Mechnig, S., Blon, T., Holuigue, C., & Romani, E. (2006). A 20-mW 640-MHz CMOS continuoustime $\Sigma\Delta$ ADC with 20-MHz signal bandwidth, 80-dB dynamic range and 12-bit ENOB. *IEEE Journal of Solid State Circuits*, 41(12), 2641–2649.

Reference Subtraction: Scheme IV

- Switched-capacitor reference subtraction
 - Pay attention to charge injection
- ADC can handle large input swing
- Slow when auto-zeroing preamp is used
 - Large settling time constant
 - Reference subtraction in background

Example: Fully-Differential Comparator

- Double-balanced, fully-differential preamp
- Switches (M₇, M₈) added to stop input propagation during regeneration
- Active pull-up PMOS added to the latch

Flash ADC: Errors

© Vishal Saxena

Flash ADC Errors

- SHA-less
- Signal and clock propagation delay
- 2^N-1 PAs + latches must be matched
- Synchronized strobe signal is critical

Going parallel is fast, but also gives rise to inherent problems...

Preamp Input Common Mode

Input CM difference creates systematic mismatch (offset, gain, C_{in} , tracking BW, and CMRR) among preamps

Sampling Aperture Error

- Preamp delay and V_{th} of sampling switch (M₉) are both signal-dependent \rightarrow signal-dependent sampling point (aperture error)
- A major challenge of distributing clock signals across 2^N-1 comparators in flash ADC with minimum clock skew (routing, V_{th} mismatch of M₉, etc.)

Nonlinear Input Capacitance

Signal-dependent input bandwidth (1/R_SC_{in}) introduces distortion

Input Signal Feedthrough

Feedthrough of V_{in} to the reference ladder through the serial connection of C_{gs1} and C_{qs2} disturbs the reference voltages

Comparator Metastability

- Cascade preamp stages (typical flash comparator has 2-3 PA stages)
- Use pipelined multi-stage latches; PA can be pipelined too
- Avoid branching off comparator logic outputs

Comparator Metastability

Logic levels can be <u>misinterpreted</u> by digital gates (branching off, diff. outputs)

Bubbles (Sparkles) in Thermometer Code

Static/dynamic comparator errors cause bubbles in thermometer code

© Vishal Saxena

Bubbles (Sparkles)

Bubble-Tolerant Boundary Detector

- 3-input NAND
- Detect "011" instead of "01" only
- "Single" bubble correction
- Biased correction

<u>Ref</u>: J. G. Peterson, "A monolithic video A/D converter," *IEEE Journal of Solid-State Circuits*, vol. 14, pp. 932-937, issue 6, 1979.

Built-In Bias

Inspecting more neighboring comparator outputs improves performance

Majority Voting Logic

<u>Ref</u>: C. W. Mangelsdorf, "A 400-MHz input flash converter with error correction," *IEEE Journal of Solid-State Circuits*, vol. 25, pp. 184-191, issue 1, 1990.

Gray Encoding

		Т	her	mor	net	er		Gray	Binary
$G_1 = I_1 I_3 + I_5 I_7$	0	0	0	0	0	0	0	000	0 0 0
- + =	1	0	0	0	0	0	0	001	0 0 1
$G_2 = I_2 I_6$	1	1	0	0	0	0	0	0 1 1	0 1 0
\sim T	1	1	1	0	0	0	0	0 1 0	0 1 1
$G_3 = I_4$	1	1	1	1	0	0	0	1 1 0	100
······	1	1	1	1	1	0	0	1 1 1	1 0 1
	1	1	1	1	1	1	0	101	1 1 0
Only one transition	1	1	1	1	1	1	1	100	1 1 1
b/t adjacent codes	T ₁	T_2	T_3	T_4	T_5	T_6	Τ ₇	$G_3 G_2 G_1$	B ₃ B ₂ B ₁

- One comparator output is ONLY used once \rightarrow No branching!
- Gray encoding fails benignly in the presence of bubbles
- Codes are also robust over metastability errors

Gray Encoding

Thermometer											Gra	Decimal							
1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	0	1	1	13
1	1	1	1	1	1	1	1	1	1	1	1	0	1	0	1	0	0	0	15
1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	0	1	0	12

Conversion of Gray code to binary code is quite time-consuming \rightarrow "quasi" Gray code

<u>Ref</u>: Y. Akazawa, et al., "A 400MSPS 8b flash AD conversion LSI," in *IEEE International Solid-State Circuits Conference*, Dig. Tech. Papers, 1987, pp. 98-99.

Flash ADC: Binary Decoders

Gray Encoded ROM Decoder

Thermometer-to-Binary Decoders for Flash Analog-to-Digital Converters

Erik Säll and Mark Vesterbacka

Wallace Tree Adder (1^s Adder)

Wallace tree decoder for an N = 4-bit flash ADC.

Folded Wallace Tree Decoder

MUX-based Decoder

Multiplexer-based decoder for N = 4 bits.

Comparison of Decoder Schemes

- Mostly custom design at higher speeds
- Pipeline the digital backend at high-sampling rates to meet clock timing
 - $T_{pd} < T_{CK} (t_{pcq} + t_{setup})$
 - $T_{cd} > t_{hold} t_{ccq}$

Flash ADC: Other Techniques

Offset Averaging (1)

[Kattmann & Barrow, ISSCC 1991]

Offset Averaging (2)

[Bult & Buchwald, JSSC 12/1997]

[Scholtens & Vertregt, JSSC 12/2002]

Flash ADC with Averaging

[Choi & Abidi, JSSC 12/2001]

Resolution	6 bits
Conversion Rate	1.3 GS/s
INL/DNL @ Fs = 1 GHz	0.35 LSB / 0.2 LSB
Input Range	1.6 V _{p-p} differential
Input Capacitance (T/H)	1 pF
Bit Error Rate @ fs = 1 GHz	< 10 ⁻¹⁰
SFDR @ fin = 100 MHz	> 44 dB up to 1.3 GS/s
SNDR @ fin = 630 MHz	35 dB @ 1 GS/s
@ fin = 650 MHz	32 dB @ 1.3 GS/s
Power Dissipation	500 mW @ 1 GS/s
(50% due to logic and clock)	545 mW @ 1.3 GS/s
Voltage Supply	3.3 V
Active/Total Die Area	2x0.4 mm ² / 2.2x2.2 mm ²
Technology	0.35-µm CMOS

Averaging networks designed to reduce input referred offset by 3x

Offset Calibration

S. Sutardja, "360 Mb/s (400 MHz) 1.1 W 0.35µm CMOS PRML read channels with 6 burst 8-20× over-sampling digital servo," ISSCC Dig. Techn. Papers, Feb. 1999.

Comparator with Offset Correcting DAC

[K.-L.J. Wong and C.-K.K. Yang, "Offset compensation in comparators with minimum input-referred supply noise," JSSC, May 2004.]

High-Performance Flash with Calibration (1)

[Park & Flynn, "A 3.5 GS/s 5-b Flash ADC in 90 nm CMOS," CICC 2006]

© Vishal Saxena

Comparator Redundancy (1)

 Idea: Build a "sea of imprecise comparators", then determine which ones to use...

C. Donovan, M. P Flynn, "A 'digital' 6-bit ADC in 0.25-µm CMOS," IEEE J. Solid-State Circuits, pp. 432-437, March 2002.

Comparator Redundancy (2)

Fig. 1 Illustration of the ADC operation scheme.

Paulus et al., "A 4GS/s 6b flash ADC in 0.13um CMOS," VLSI Circuits Symposium, 2004

Stochastic Flash ADC

- Fully synthesized ADC using 'digital' comparator cells (large offsets)
- Use more than 1 comparator for a reference threshold
 - Use 'detection theory' to make accurate decisions around a threshold, by using more than one observation
- Low speed designs (<20 MS/s)
 - A 6b Stochastic Flash Analog-to-Digital Converter Without Calibration or Reference Ladder

Skyler Weaver¹, Benjamin Hershberg¹, Daniel Knierim², and Un-Ku Moon¹

© Vishal Saxena

Flash ADC: Case Study

Case Study: Distortion Compensating Flash ADC

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 9, SEPTEMBER 2006

A Distortion Compensating Flash Analog-to-Digital Conversion Technique

Venkata Srinivas, Shanthi Pavan, Ashish Lachhwani, and Naga Sasidhar

1959

T/H Distortion

Fig. 2. Flash ADC behavior with an ideal track-and-hold.

Fig. 3. Flash ADC behavior with a real track-and-hold having static nonlinearity.

Pre-distorted References

Fig. 5. ADC output spectrum with track-and-hold having static nonlinearity with (a) linear references and (b) predistorted references.

© Vishal Saxena

ADC Architecture

T/H Circuit

Comparator

Schematic of the preamplifier.

Non-linear Reference Generator

g. 12. Nonlinear reference generator.

ADC Testing

Fig. 20. Illustration of (a) continuous background autozero mode and (b) discontinuous background autozero mode.

Test Results

SUMMARY OF ADC PERFORMANCE

Resolution	6 bits
Technology	$0.35\text{-}\mu\mathrm{m}~\mathrm{CMOS}~2\mathrm{P4M}$
Supply voltage	3.3 V
Nominal input swing	3.4 V_{pp} differential
DNL (nominal input range)	0.3 LSB
INL (nominal input range)	0.3 LSB
SNDR	36.0 dB $@f_{in} = 49.9$ MHz,
	$f_s = 100 \text{ MHz}$
	33.6 dB @ $f_{in} = 79.9$ MHz,
	$f_s = 160 \text{ MHz}$
Power consumption	$50~\mathrm{mW}$ @ f_s =160 MHz
Active Area	$2.0 \times 0.4 \text{ mm}^2$
Chip package	DIP40

Figure of Merit

Energy	_	$P_{ m diss}$
$\overline{(\text{conversion_step})}$	_	$2^{\text{ENOB}} \times f_{\text{samp}}$

References

- 1. Rudy van de Plassche, "CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters," 2nd Ed., Springer, 2005.
- 2. M. Gustavsson, J. Wikner, N. Tan, *CMOS Data Converters for Communications*, Kluwer Academic Publishers, 2000.