

Data Converter Basics

Vishal Saxena, Boise State University (vishalsaxena@boisestate.edu)

A/D and D/A Conversion

A/D Conversion

D/A Conversion

Quantization

- Quantization = division + normalization + truncation
- Full-scale range (V_{FS}) is determined by V_{ref}

Quantization Error

$$\Delta = \frac{V_{FS}}{2^{N}} = LSB$$
$$V_{in} \in [0, V_{FS}]$$
$$\epsilon = D_{out}\Delta - V_{in} = D_{out}\left(\frac{V_{FS}}{2^{N}}\right) - V_{in}$$
$$-\frac{\Delta}{2} \le \epsilon \le \frac{\Delta}{2}$$

"Random" quantization error is usually regarded as noise

Quantization Noise

Assumptions:

- N is large
- $0 \le V_{in} \le V_{FS}$ and $V_{in} >> \Delta$
- V_{in} is active
- ε is Uniformly distributed
- Spectrum of ε is white

Signal-to-Quantization Noise Ratio (SQNR)

Assume V_{in} is sinusoidal with $V_{p-p} = V_{FS}$,	N (bits)	SQNR (dB)
SQNR = $\frac{V_{FS}^{2}/8}{\sigma_{\epsilon}^{2}} = \frac{(2^{N}\Delta)^{2}/8}{\frac{\Delta^{2}}{12}} = 1.5 \times 2^{2N}$,	(DII3)	
	10	62.0
	12	74.0
SQNR = $6.02 \times N + 1.76 dB$	14	86.0

- SQNR depicts the theoretical performance of an ideal ADC
- In reality, ADC performance is limited by many other factors:
 - Electronic noise (thermal, 1/f, coupling/substrate, etc.)
 - Distortion (measured by THD, SFDR, IM3, etc.)

FFT Spectrum of Quantized Signal

- N = 10 bits
- 8192 samples, only $f = [0, f_s/2]$ shown
- Normalized to V_{in}
- $f_{\rm s} = 8192, f_{\rm in} = 779$
- *f*_{in} and *f*_s must be incommensurate

Coherent Sampling

- Periodic sampling points result in periodic quantization errors
- Periodic quantization errors result in harmonic distortion

Spectrum Leakage

- TD samples must include integer number of cycles of input signal
- Windowing can be applied to eliminate spectrum leakage
- Trade-off b/t main-lobe width and sideband rejection for different windows

FFT Spectrum with Distortion

- High-order harmonics are aliased back, visible in $[0, f_s/2]$ band
- E.g., HD3 @ 779x3+1=2338, HD9 @ 8192-9x779+1=1182

Dynamic Performance

- Peak SNDR limited by large-signal distortion of the converter
- Dynamic range implies the "theoretical" SNR of the converter

Dynamic Performance Metrics

- Signal-to-quantization-noise ratio (SQNR)
- Total harmonic distortion (THD)
- Signal-to-noise and distortion ratio (SNDR or SINAD)
- Spurious-free dynamic range (SFDR)
- Two-tone intermodulation product (IM3)
- Aperture uncertainty (related to the frontend S/H and clock)
- Dynamic range (DR)

Evaluating Dynamic Performance

- Signal-to-noise plus distortion ratio (SNDR)
- Total harmonic distortion (THD)
- Spurious-free dynamic range (SFDR)

Static Performance Metrics

- Offset (OS)
- Gain error (GE)
- Monotonicity
- Linearity
 - Differential nonlinearity (DNL)
 - Integral nonlinearity (INL)

Ideal ADC Transfer Characteristic

Note the systematic offset! (floor, ceiling, and round)

DNL and Missing Code

DNL = deviation of an input step width from 1 LSB (= $V_{FS}/2^N = \Delta$)

DNL and Nonmonotonicity

DNL = deviation of an input step width from 1 LSB (= $V_{FS}/2^N = \Delta$)

INL = deviation of the step midpoint from the ideal step midpoint (method I and II ...)

Accuracy-Speed Tradeoff

Flash ADC Architecture

- Reference ladder consists of 2^N equal size resistors
- Input is compared to 2^N-1 reference voltages
 - Massive parallelism
- Very fast ADC architecture
- Latency = $1 \text{ T} = 1/f_s$
- Throughput = f_s
- Complexity = 2^N

Thermometer Code

Flash ADC Challenges

- V_{DD} = 1.8 V
 - 10-bit \rightarrow 1023 comparators
- $V_{FS} = 1 V$ $\rightarrow 1 LSB = 1 mV$
- DNL < 0.5 LSB \rightarrow V_{os} < 0.5 LSB
- 0.5 mV = 3-5 $\sigma \to \sigma$ = 0.1-0.2 mV
- 2^N-1 very large comparators
- Large area, large power consumption
- Very sensitive design
- Limited to resolutions of 4-8 bits

References

- 1. Rudy van de Plassche, "CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters," 2nd Ed., Springer, 2005.
- 2. M. Gustavsson, J. Wikner, N. Tan, *CMOS Data Converters for Communications*, Kluwer Academic Publishers, 2000.