
Department of Electrical and Computer Engineering

© Vishal Saxena -1-

Data Converter Basics

Vishal Saxena, Boise State University
(vishalsaxena@boisestate.edu)



© Vishal Saxena -2-

A/D and D/A Conversion
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Quantization
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• Quantization = division + normalization + truncation 
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Quantization Error
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“Random” quantization error 
is usually regarded as noise

N = 3
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Quantization Noise
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Assumptions:
• N is large
• 0 ≤ Vin ≤ VFS and Vin >> Δ
• Vin is active
• ε is Uniformly distributed
• Spectrum of ε is white
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Signal-to-Quantization Noise Ratio (SQNR)
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Assume Vin is sinusoidal with Vp-p = VFS,

SQNR = 6.02 N+1.76 dB

N
(bits)

SQNR
(dB)

8 49.9
10 62.0
12 74.0
14 86.0

• SQNR depicts the theoretical performance of an ideal ADC

• In reality, ADC performance is limited by many other factors:
– Electronic noise (thermal, 1/f, coupling/substrate, etc.)
– Distortion (measured by THD, SFDR, IM3, etc.)
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FFT Spectrum of Quantized Signal

• N = 10 bits

• 8192 samples, only
f = [0, fs/2] shown

• Normalized to Vin

• fs = 8192, fin = 779

• fin and fs must be
incommensurate
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SQNR = 61.93 dB
ENOB = 9.995 bits
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Coherent Sampling
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• Periodic sampling points result in periodic quantization errors

• Periodic quantization errors result in harmonic distortion
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Spectrum Leakage
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• TD samples must include integer number of cycles of input signal

• Windowing can be applied to eliminate spectrum leakage

• Trade-off b/t main-lobe width and sideband rejection for different windows

w/
Blackman
window
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FFT Spectrum with Distortion
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• High-order harmonics are aliased back, visible in [0, fs/2] band

• E.g., HD3 @ 779x3+1=2338, HD9 @ 8192-9x779+1=1182

HD3
HD9
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Dynamic Performance

• Peak SNDR limited by large-signal distortion of the converter

• Dynamic range implies the “theoretical” SNR of the converter
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Dynamic Performance Metrics

• Signal-to-quantization-noise ratio (SQNR)

• Total harmonic distortion (THD)

• Signal-to-noise and distortion ratio (SNDR or SINAD)

• Spurious-free dynamic range (SFDR)

• Two-tone intermodulation product (IM3)

• Aperture uncertainty (related to the frontend S/H and clock)

• Dynamic range (DR) 
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Evaluating Dynamic Performance
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• Signal-to-noise
plus distortion ratio
(SNDR)

• Total harmonic
distortion (THD)

• Spurious-free
dynamic range
(SFDR)

SNDR = 59.16 dB
THD = 63.09 dB
SFDR = 64.02 dB
ENOB = 9.535 bits
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Static Performance Metrics

• Offset (OS)

• Gain error (GE)

• Monotonicity

• Linearity
– Differential nonlinearity (DNL)

– Integral nonlinearity (INL)
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Ideal ADC Transfer Characteristic
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Note the systematic offset! (floor, ceiling, and round)
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DNL and Missing Code
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DNL = deviation of an input step width from 1 LSB (= VFS/2N = Δ)

• DNL = ?

• Can DNL < -1?
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DNL and Nonmonotonicity
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DNL = deviation of an input step width from 1 LSB (= VFS/2N = Δ)

• DNL = ?

• How can we even 
measure this?
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INL
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INL = deviation of the step midpoint from the ideal step midpoint

(method I and II …)

Any code

• Missing?

• Nonmonotonic?
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Accuracy-Speed Tradeoff
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Flash ADC Architecture

• Reference ladder
consists of 2N equal
size resistors

• Input is compared
to 2N-1 reference
voltages

• Massive parallelism

• Very fast ADC
architecture

• Latency = 1 T = 1/fs
• Throughput = fs
• Complexity = 2N
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Thermometer Code
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Flash ADC Challenges

• VDD = 1.8 V

• 10-bit

• VFS = 1 V

• DNL < 0.5 LSB

• 0.5 mV = 3-5 σ

→ 1023 comparators

→ 1 LSB = 1 mV

→ Vos < 0.5 LSB

→ σ = 0.1-0.2 mV

• 2N-1 very large comparators

• Large area, large power consumption

• Very sensitive design

• Limited to resolutions of 4-8 bits
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