

DAC Architectures

Vishal Saxena, Boise State University (vishalsaxena@boisestate.edu)

Static Performance of DACs

DAC Transfer Characteristics

- N = # of bits
- V_{FS} = Full-scale range

•
$$\Delta = V_{FS}/2^N = 1LSB$$

Note:
$$V_{out}$$
 (b_i = 1, for all i) = $V_{FS} - \Delta = V_{FS}(1-2-N) \neq V_{FS}$

Ideal DAC Transfer Curve

Offset

Gain Error

Monotonicity

Differential and Integral Nonlinearities

- DNL = deviation of an output step from 1 LSB (= $\Delta = V_{FS}/2^N$)
- INL = deviation of the output from the ideal transfer curve

DNL and INL

INL = cumulative sum of DNL

DNL and **INL**

- DNL measures the uniformity of quantization steps, or incremental (local) nonlinearity; small input signals are sensitive to DNL.
- INL measures the overall, or cumulative (global) nonlinearity; large input signals are often sensitive to both INL (HD) and DNL (QE).

Measure DNL and INL (Method I)

Endpoints of the transfer characteristic are always at 0 and V_{FS} - Δ

Measure DNL and INL (Method II)

Endpoints of the transfer characteristic may not be at 0 and V_{FS} - Δ

Measure DNL and INL

DAC Architectures

DAC Architecture

- Nyquist DAC architectures
 - Binary-weighted DAC
 - Unit-element (or thermometer-coded) DAC
 - Segmented DAC
 - Resistor-string, current-steering, charge-redistribution DACs
- Oversampling DAC
 - Oversampling performed in digital domain (zero stuffing)
 - Digital noise shaping ($\Sigma\Delta$ modulator)
 - 1-bit DAC can be used
 - Analog reconstruction/smoothing filter

Binary-Weighted DAC

Binary-Weighted CR DAC

- Binary-weighted capacitor array \rightarrow most efficient architecture
- Bottom plate @ V_R with $b_j = 1$ and @ GND with $b_j = 0$

Binary-Weighted CR DAC

- $C_p \rightarrow$ gain error (nonlinearity if C_p is nonlinear)
- INL and DNL limited by capacitor array mismatch

Stray-Insensitive CR DAC

MSB Transition

Assume:
$$C_4 - (C_1 + C_2 + C_3) = C_u + \delta C$$
,
 $DNL = [V_o(1000) - V_o(0111) - 1LSB]/1LSB$
 $= \frac{\delta C}{\sum C} / \frac{C_u}{\sum C} = \delta C / C_u$

Largest DNL error occurs at the midpoint where MSB transitions, determined by the mismatch between the MSB capacitor and the rest of the array.

Midpoint DNL

- $\delta C > 0$ results in positive DNL
- $\delta C < 0$ results in negative DNL or even nonmonotonicity

Output Glitches

- Cause: Signal and clock skew in circuits
- Especially severe at MSB transition where all bits are switching –
 - 0111...111 →
 - 1000...000
- Glitches cause waveform distortion, spurs and elevated noise floors
- High-speed DAC output is often followed by a de-glitching SHA

De-Glitching SHA

SHA samples the output of the DAC after it settles and then hold it for T, removing the glitching energy.

SHA output must be smooth (exponential settling can be viewed as pulse shaping \rightarrow SHA BW does not have to be excessively large).

Frequency Response

Binary-Weighted Current-Steering DAC

- Current switching is simple and fast
- V_o depends on R_{out} of current sources without op-amp
- INL and DNL depend on matching, not inherently monotonic
- Large component spread (2^{N-1}:1)

R-2R DAC

- A binary-weighted current DAC
- Component spread greatly reduced (2:1)

Unit-Element DAC

Resistor-String DAC

- Simple, inherently monotonic \rightarrow good DNL performance
- Complexity \uparrow speed \downarrow for large N, typically N \leq 8 bits

Code-Dependent R_o

- R_o of ladder varies with signal (code)
- On-resistance of switches depend on tap voltage

DNL

INL

$$\Rightarrow \overline{V_{j}} = \frac{j-1}{N} V_{R}, \quad \sigma_{V_{j}}^{2} \approx \frac{(j-1)(N-j+1)}{N^{3}} \frac{\sigma_{R}^{2}}{R^{2}} V_{R}^{2}$$
$$\Rightarrow \sigma_{V_{j}}^{2} (max) \approx \frac{1}{4N} \frac{\sigma_{R}^{2}}{R^{2}} V_{R}^{2}, \quad \text{when} \quad j = \frac{N}{2} + 1 \approx \frac{N}{2}$$

$$INL_{j} = \left(V_{j} - \frac{j-1}{N}V_{R}\right) / \frac{V_{R}}{N} \implies \overline{INL} = 0, \ \sigma_{INL}(max) \approx \frac{\sqrt{N}}{2} \left(\frac{\sigma_{R}}{R}\right)$$

INL and DNL of Binary-Wtd DAC

A Binary Weighted DAC is typically constructed using unit elements, the same way as that of a Unit Element DAC, for good component matching accuracy.

$$\Rightarrow \frac{\overline{\text{INL}} = 0, \ \sigma_{\text{INL}}(\text{max}) \approx \frac{\sqrt{N}}{2} \left(\frac{\sigma_{\text{R}}}{R}\right)}{\overline{\text{DNL}} = 0, \ \sigma_{\text{DNL}}(\text{max}) = 2 \cdot \text{INL} \approx \sqrt{N} \left(\frac{\sigma_{\text{R}}}{R}\right)}$$

Current-Steering DAC

- Fast, inherently monotonic \rightarrow good DNL performance
- Complexity increases for large N, requires B2T decoder

Unit Current Cell

- 2^N current cells typically decomposed into a (2^{N/2}×2^{N/2)} matrix
- Current source cascoded to improve accuracy (R_o effect)
- Coupled inverters improve synchronization of current switches

Segmented DAC

BW vs. UE DACs

Binary-weighted DAC

- Pros
 - Min. # of switched elements
 - Simple and fast
 - Compact and efficient
- Cons
 - Large DNL and glitches
 - Monotonicity not guaranteed
- INL/DNL
 - − INL(max) ≈ $(\sqrt{N/2})\sigma$
 - DNL(max) ≈ 2*INL

Unit-element DAC

- Pros
 - Good DNL, small glitches
 - Linear glitch energy
 - Guaranteed monotonic
- Cons
 - Needs B2T decoder
 - complex for $N \ge 8$
- INL/DNL
 - − INL(max) ≈ $(\sqrt{N/2})\sigma$
 - − DNL(max) ≈ σ

Combine BW and UE architectures \rightarrow Segmentation

Segmented DAC

- MSB DAC: Mbit UE DAC
- LSB DAC: L-bit
 BW DAC
- Resolution: N = M + L
- 2^M+L switching elements
- Good DNL
- Small glitches
- Same INL as
 BW or UE

Comparison

<u>Example</u>: N = 12, M = 8, L= 4, σ = 1%

Architecture	σ_{INL}	σ_{DNL}	# of s.e.
Unit-element	0.32 LSB's	0.01 LSB's	2 ^N = 4096
Binary-	0.32	0.64	N = 12
weighted	LSB's	LSB's	
Segmented	0.32	0.06	2 ^M +L =
	LSB's	LSB's	260

Max. DNL error occurs at the transitions of MSB segments

Example: "8+2" Segmented Current DAC

Ref: C.-H. Lin and K. Bult, "A 10-b, 500-MSample/s CMOS DAC in 0.6mm²," *IEEE Journal of Solid-State Circuits*, vol. 33, pp. 1948-1958, issue 12, 1998.

MSB-DAC Biasing Scheme

Common-centroid global biasing + divided 4 quadrants of current cells

MSB-DAC Biasing Scheme

Chip A: Merged 4 quadrants

Randomization and Dummies

• Column and row randomization to improve INL

Current-Steering DAC Unit Cell

Vishal Saxena

Current-Steering DAC Calibration

References

- 1. Y. Chiu, *Data Converters Lecture Slides*, UT Dallas 2012.
- 2. Rudy van de Plassche, "CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters," 2nd Ed., Springer, 2005..
- B. Boser, Analog-Digital Interface Circuits Lecture Slides, UC Berkeley 2011.
- D. K. Su and B. A. Wooley, JSSC, pp. 1224-1233, issue 12, 1993.
- C.-H. Lin and K. Bult, JSSC, pp. 1948-1958, issue 12, 1998.
- K. Khanoyan, F. Behbahani, A. A. Abidi, VLSI, 1999, pp. 73-76.
- K. Falakshahi, C.-K. Yang, B. A. Wooley, JSSC, pp. 607-615, issue 5, 1999.
- G. A. M. Van Der Plas et al., JSSC, pp. 1708-1718, issue 12, 1999.
- □ A. R. Bugeja and B.-S. Song, JSSC, pp. 1719-1732, issue 12, 1999.
- A. R. Bugeja and B.-S. Song, JSSC, pp. 1841-1852, issue 12, 2000.
- A. van den Bosch et al., JSSC, pp. 315-324, issue 3, 2001.