
PLATFORM APPLICATION NOTE

Creating Analog Behavioral Models
VERILOG-AMS ANALOG MODELING

February 2003

TABLE OF CONTENTS

 Incisive Verification Platform..1

1 Application Note Overview ...1

2 Introduction ..1

3 Verilog-A Language Overview ...2

4 Analog Modeling Considerations..8

5 Verilog-D Language Overview ...16

6 Verilog-AMS Language Overview ..20

7 Available Cadence Online Documentation ...22

8 References ..22

 PLATFORM APPLICATION NOTE 1

CADENCE INCISIVE VERIFICATION PLATFORM
Verifying today�s complex ICs requires the speed and efficiency that can be provided only in a unified verification
methodology. The Cadence Incisive� verification platform enables the development of a unified methodology from system
design to system design-in for all design domains. A unified verification methodology consists of many different tools,
technologies and processes all working together in a common environment. The Incisive verification platform provides the
tools, technologies, a common user environment, and the support needed to develop a unified methodology. This
application note details specific topics for using the tools and technologies in the Incisive platform to help create a unified
methodology to verify your design.

1 APPLICATION NOTE OVERVIEW
Analog behavioral modeling can help speed up verifications for larger, complex circuits where simulations are longer and
more difficult to complete. This application note is an introduction to analog behavioral modeling using Verilog-A running in
Spectre�. It gives examples to help you understand the basic modeling concepts. It also includes explanations of Verilog-D
and Verilog-AMS, which is a true fully analog mixed-signal language working with Incisive�-AMS. Most of the content in this
application note was derived and summarized from the AMS Behavioral Modeling Workshop (see reference [1]).

2 INTRODUCTION
Analog Behavioral Modeling deals with creating and simulating models based on a desired external circuit behavior. Models
are best used to represent circuit block behavior and not simply replicate individual transistor characteristics. Models can be
as complex as necessary. Often, initial behavioral models need to carry only the basic properties, such as an operational
amplifier might have voltage swings, impedances, and gain. In other cases, there might be a need to model slew rates,
differential signals and bandwidth properties. Adjustable parameters can be added to model and preview design tradeoffs in
a circuit. The more complex a model is, the more impact it will have on the simulation time and convergence. It is important
to consider what tradeoffs are important and necessary before starting to write a model. Creating a detailed macro-model is
often an important first step in determining what to model, rather than using a trial and error approach. There are six main
reasons to consider modeling:

• Design exploration

• Verify connectivity

• Verify functionality

• Speed up simulations

• Reuse in future designs

• To create a portable design IP

Modeling is best when used early in the design cycle.

Analog behavioral modeling is part of a wider design methodology called �top-down design.� This may seem obvious, but
there are a number of aspects that require careful consideration to take full advantage of modeling. Top-down design starts
with creating a hierarchical design. This is a common design practice today, especially for large designs. However, the key
is to make all circuit blocks in the hierarchy pin-to-pin compatible so that each can be represented by either a model or an
actual transistor-level circuit block. Later, the views can be toggled between model and transistor for mixed-level simulation.
One of the biggest advantages of using modeling is to take well-behaved transistor-level circuit blocks that are slow to
simulate, and switch them to a model to shorten simulation time. Sub-circuit blocks not in the signal path, such as PLLs, lend
themselves well to being run as a model because they have well-behaved feedback properties. In other cases, modeling the
entire design might be of interest to run system-like simulations for architectural exploration while designing the IC. With
hierarchical design, it is possible to create models at any level of the hierarchy. Generally, the higher the level of modeling,
the faster the simulation runs. In addition, it is also possible to represent digital functional and behavioral models in Verilog-
A. Where there is only a small number of digital blocks, it is advantageous to represent these in Verilog-A. This cuts down
on the overhead of having a mixed-mode simulator. In other cases, where there is a large Verilog-A, models lend
themselves well to creating basic signal sources and measurement blocks in testbenches. This is especially true for wireless
systems where pseudo-random signal sources can be easily set up and where measurement blocks can calculate Bit Error
Rates (BER) or plot Eye Diagrams after a long simulation.

Another important aspect of modeling is �bottom-up� modeling�taking finished transistor-level circuit block results and
exactly modeling them. This may require some effort and characterization. Sometimes the behavioral model is simply a

 PLATFORM APPLICATION NOTE 2

matter of writing a few mathematical expressions. In other cases, it might require curve fitting of non-linear behavior in all
modes of operation. Look-up tables can also be used. The end result is a close replica of the transistor-level circuit block,
which can be used with confidence and reused in other designs. Over time, commonly used blocks that go through this
process can create a reuse library that will greatly enhance simulating designs that otherwise would take longer. The one
common goal in modeling is to eventually simulate top-level behavior. The other is to determine if it is correctly wired and if it
works. Top-level simulations of large IC designs are often not possible without some type of modeling.

Admittedly, most integrated circuit designers do not like modeling. It takes some skill to write models and there is no time for
designers to write models. Some think model writing is boring or that modeling will never be accurate enough to use. But
these points are only partially true. In the initial design phases, second and third order effects, especially from layout
parastics, are not needed for functional simulations. These can be added later as needed. To really do modeling well, it will
take some time to master. However, to learn the basics and to reuse and adapt previously written models is not difficult. The
Verilog-A language constructs are basically simple to follow by example. A designer can extend a set of design aids
tremendously with modeling. And because Verilog-A is a standardized language, it is portable between simulators and can
have wide adoption. Learning Verilog-A is very worthwhile for many designers.

3 VERILOG-A LANGUAGE OVERVIEW
Verilog-A was derived from Verilog HDL in 1996 by the Open Verilog International (OVI) organization, and was later
extended to Verilog-AMS. Verilog-AMS is based on Verilog-A and Verilog-D, which are covered in IEEE standards 1364-
1995. OVI, which is now called Accellera, approved Verilog-AMS version 2.0 in January 2000. Verilog-AMS is a superset of
Verilog-D and Verilog-A and a true mixed-language, where both are written into a model. Many of the Verilog-A constructs
are the same in Verilog-AMS, with minimal differences. Verilog-D in Verilog-AMS is extended to support both Verilog-A and
Verilog-AMS connections.

Verilog-AMS is a true mixed-signal language, interacting with the analog and digital sections by an Application Program
Interface (API) between the analog and digital simulators. Verilog-AMS is designed to work well in Incisive-AMS, a fully
capable mixed-signal simulator. Interface elements (IEs) connect the two disciplines and are automatically inserted by the
simulator based on a relationship defined by the discipline.

3.1 LANGUAGE BASICS

Before going into Verilog-A modeling examples, it is important to understand some of the language basics. Verilog-A has the
ability to model a variety of disciplines, the most common of which are electrical, magnetic, thermal, kinematic, and
rotational. You can also define your own disciplines. For the most part, the electrical discipline, which is expressed as
voltages and currents, is used primarily for integrated circuit modeling. Along with disciplines, there
are three basic modeling styles: Conservative, Signal-Flow, and Event. The Conservative modeling
style includes both a potential and a flow. For an electrical system, these would be voltage and
current, respectively. The Signal-Flow model includes only a potential. This is useful for high-level
modeling or in cases where there is no need to express a current in an electrical discipline. The
third style is Event models, which only evaluate events. This is useful in digital, mixed-signal, and
high-level models. Verilog-AMS allows any combination of these modeling styles. Using Kirchhoff�s law, Nodes are defined
as being where branches interconnect and branches are the paths between nodes. Disciplines are described by Natures,

which describe the tolerance (abstol), evaluated units (units), and name (access). Usually,
Disciplines and Natures are described in a file called
disciplines.h (disciplines.vams for Verilog-AMS) which
is included during netlisting. These can also be
included in the actual model file. A constants.h
(constants.vams for Verilog-AMS) file. The constants.h
file which carries commonly used mathematical and

physical constants is also included. Mathematical constants have an `M_ prefix and
physical constant `P_ prefix (examples: `M_TWO_PI = 2π and `P_Q = Q).

Verilog-A modules have pin connections (called ports) and behave like any
component in a circuit, such as a transistor or resistor. The syntax of the model file,
outside of including the disciplines.h and constant.h files, starts with a module
declaration which carries the module name and declared pin names. The pin
connections have declared port directions and disciplines. In IC design, the
discipline will likely be electrical, but there are cases where only a voltage or current
will be used. In other cases, cross-discipline models can be described where
electrical is coupled to magnetic and rotational disciplines. An example of this could

Nature Voltage
 abstol = 1u;
 units = �V�;
 access = V;
 huge = 1e5;
endnature

Discipline electrical
 domain = electrical;
 potential = Voltage;
 flow = Current;
enddiscipline

include �disciplines.h�
include �constants.h�

module rlc (a,b);
 electrical a,b;
 parameter R=1 exclude 0;
 parameter C=1;
 parameter L=1 exclude 0;
 branch (a,b) res, cap, ind;

analog begin
 I(a,b) <+ idt(V(a,b))/L;
 V(res) <+ R*I(res);
 I(cap) <+ C*ddt(V(cap));
end

endmodule;

 PLATFORM APPLICATION NOTE 3

be a disk drive controller. Parameter declarations follow which optionally allow the parameter to be passed from module to
schematic without editing the model file. Where components share the same nodes and are often referenced, a branch
statement can provide a name to each branch. If there are variables used in the model, such as real and integers, these
need to be declared before use. Variable names must start with a letter or _, and are case sensitive.

The analog begin line is where analog behavior begins. Often, this section is where voltage and currents from outside pins
are sensed, checked for signal crossings, mathematically conditioned, then pushed back out to the circuit or stored in a file.
The equals sign (=) is used to equate relations evaluating a new value with each step of the simulator. The simulator
interprets the model in sequential steps. For example, at each timestep for a transient, each relationship is evaluated and
can depend on previous lines. Inside a controlled loop, such as conditional expressions, all expressions are evaluated
together and dependent on outside the loop. The Contribution Operator (<+) is a line in the model that passes conditioned
signals back to the rest of the circuit being simulated. This can be additive, such that there could be multiple expressions
passing signals to the same outside pin. All lines in the model file end with a �;� except basically, begin, else and end
statements. The model file is closed with an endmodule statement.

3.2 Mathematical Functions and Operators

Verilog-A has mathematical functions and operators which include standard mathematical functions (standard math,
logarithms, trigonometry, hyperbolics), random numbers (uniform, Gaussian, exponential, Poisson, chi-squared, students-T,
Erlang), analog operators (derivative, integral, analog delay), and analog filters (transition, slew, Laplace, Z).

There is a standard set of operators in Verilog-A similar to other programming languages to write expressions. Built-in math
functions cover a set of commonly used relationships. Analog Operators can evaluate derivatives and integrals which often
occur in signal conditioning along with adding built-in time delays.

Verilog-A Operators

+ plus
- minus
* multiply
/ divide
% modulus
< less than
> greater than
<= less than, equal to
>= greater than, equal to
!== case inequality
=== case equality
!= logical not equal
(?:) ternary
== logical equal
! logical negation
&& logical and
|| logical or
~ bit negation
& bit and
| bit or
^ bit xor
^~,~^ bit equivalence
<< left shift
>> right shift
or event or

Verilog-A Built-In Math Functions

Function Description Domain
ln(x) natural log x>0
log(x) decimal log x>0
exp(x) exponential x<80
sqrt(x) square root x>=0
min(x,y) minimum all x, all y
max(x,y) maximum all x, all y
abs(x) absolute all x
pow(x,y) power xy if x>=0, all y
 if x<0, int(y)
floor(x) floor all x
ceil(x) ceiling all x
sin(x) sine all x
cos(x) cosine all x
tan(x) tangent x !=n(π/2), n is odd
asin(x) arc-sine -1 <=x<=1
acos(x) arc-cosine -1 <=x<=1
atan(x) arc-tangent all x
atan2(x,y) arc-tangent x/y all x, y, except 0
hypot(x) sqrt(x2 + y2) all x, y
sinh(x) hyperbolic sin all x
cosh(x) hyperbolic cos all x
tanh(x) hyperbolic tan all x
asinh(x) a-hyperbolic sin all x
acosh(x) a-hyperbolic cos x=>1
atanh(x) a-hyperbolic tan -1<=x<=1

 PLATFORM APPLICATION NOTE 4

3.3 Analog Operators

Analog Operators, which maintain an internal state, produce a return value as a function of an input expression. Analog
operators cannot be used in functions, repeat, while, or for statements. If if or case statements are used, the controlling
expression must consist entirely of literal numerical constants, parameters, or the analysis function. The following is a list of
analog operators:

1. Differentiator: ddt(x)

- Time derivative of its argument

- For second derivative, use ! y = ddt(x), then z = ddt(y)

2. Integrator: idt(x)

- Time integral of its argument, with optional initial condition

 Example: y = idt(x) + c;

3. Circular Integrator: idtmod(x) example

- Time integral of its argument, passed through a
modulus operation

- Periodic integration

4. Time Delay: absdelay(x)

- Delayed argument

5. Last Zero Crossing: last_crossing(x)

- Time of last crossing

6. Analog Transition Filter: transition(input_signal, time-delay, risetime, falltime)

- Filters piecewise constant waveforms to piecewise linear

- Adds delay, finite rise and fall times

- Not for smoothly varying inputs, use slew
filter instead

7. Slew Filter: slew(input_signal, slew_pos,
slew_neg)

- Bounds the signal rate-of-change to the
output

Example: V(out) <+ slew(V(in), sr_pos,
sr_neg);

8. Laplace Filters

- Linear continuous-time filter functions

 (fixed poles and zeroes)

- See user manual for further description

Example: Analog D Flip-Flop

module dff (q,d,clk);
 voltage q, d, clk;

input clk, d;
output q;
parameter real td=0 from [0:inf], tr=0 from [0:inf];
parameter integer dir=1 from [-1:1] exclude 0;
parameter real Vdd=5 from (0:inf);

integer state;

analog begin
 @cross(V(clk) – Vdd/2, dir)
 state = (V(d) > Vdd/2);
 V(q) <+ transition(state*Vdd,td,tr);
end

endmodule

Example: Basic Sinusoidal VCO

module vco(out,in);
 voltage out,in;
 parameter real k = 1M;
 real phase, freq;

 analog begin
 freq = k*V(in);
 phase = idtmod(freq,0,1);
 V(out) <+ cos(2*`M_PI*phase);
 $bound_step(1/(10*freq));
 end

endmodule

 PLATFORM APPLICATION NOTE 5

9. Z Filters

- Linear discrete-time filter functions

 (fixed period, poles, and zeroes)

- See user manual for further description

3.4 Analog Event-Driven Modeling

1. @ (event)

- When an event edge is needed, an �@(event) command� is used to execute the command. The following table
describes the most common event commands that can be used.

Analog Event Types Description

cross(expr,dir) At analog signal crossings

above(expr) At signal low-to-high crossing, and when above at DC

timer(time,dt) Periodically or at specific times

Initial_step At the beginning of simulation

final_step At the end of the simulation

2. Cross Event Operator

- Syntax: cross(expr, direction, timeTol, exprTol)

- Generates event when expr crosses 0 in a specified direction

- Timepoint is placed just after the crossing, within tolerances

- To know the exact time of crossing, use last_crossing(expr)

Example: Phase/Frequency Detector

module pfd_cp (out, ref, vco);
 current out; voltage ref, vco;
 output out; input ref, vco;
 parameter Iout = 100u;
 integer state;

analog begin
 @(cross(V(ref)), +1)
 if (state > -1) state = state � 1;
 @(cross(V(vco)), +1)
 if (state < 1) state = state +1;
 I(out) <+ transition(Iout*state);
end

endmodule

 exprTol

timeTol

 PLATFORM APPLICATION NOTE 6

3.5 Looping and Conditional Statements

Verilog-A provides a complete set of loops and conditional statements.

1. If-else: The If-else is a binary conditional set of statements under control of specified conditional expressions.

if (expression1) statement1;
 else if (expression2) statement2;
else statement3;
Example:
if (x >= 1) y = 3;
else if (x <= 1) y = 2;
else y = 1;
Result: y is binned between 1, 2, and 3 dependent on x

2. The case expression controls of a series of statements to run depending on what the expression is equal to.

case (expression)
value1: statement1;
value2: statement2;
value3: statement3;
default: statement;
endcase

Example:
y = 2;
case(y)
1 : x = 5;
2 : x = 1;
default : y = 10;
endcase

Result: case 2 is selected where x=1

3. The repeat loop statement runs for a fixed number of times as determined by the constant_value.

 repeat (constant_value) statement;

Example: repeat (5) begin I = I + 1; total = total + 1; end
Result: The loop will repeat 5 times and total will = 5.

4. The while loop statement is used when you want to leave the loop when an expression is no longer valid.

 while (expression) statement;

 Example: while (x>y) begin count = count + 1; end
 Result: Conditionally, when x is greater than y, count will increment 1 each time.

5. The for loop statement runs a fixed number of time.

 for (initial_statement; expression; step_statement) statement;

 Example: for (j=2; j > 22; j = j +2) total = total + j;
 Result: Loop will execute and continue from j=2 to j=22 incrementing by 2 and then stop.

 PLATFORM APPLICATION NOTE 7

3.6 Simulator Interface Functions

Verilog-A can provide conditional controls, information commands, and small-signal stimulus functions.

1. analysis(): Analysis done on a condition basis

Example:
module cap1 (a,b);
electrical a,b;
parameter real c=0, ic=0;
analog begin
 if (analysis (�ic�)) " excute on transient IC analysis only

 V(a,b) <+ ic;
 else " execute all other analyses
 I(a,b,) <+ ddt(c*V(a,b));
 end
endmodule

2. $discontinuity(): Used to make a model discontinuity at current point. A discontinuity(0) announces a discontinuity in a
descriptive equation. A discontinuity(1) indicates a discontinuity in the first derivative (slope) of the equation.

Examples:
analog begin
 @(timer(0, wavelength)) begin
 slope = +1;
 wstart = $abstime;
 discontinuity(1) " “1” done for a negative to positive slope change
 end

 analog
 @(cross(V(pin, nin) – 1, 0.01n) discontinuity (0); " “0” used in an equation

3. $abstime, $temperature, $vt, $vt(): These are environment functions that provide information about the current
simulation environment.

Examples:
therm_volt = `P_K * $temperature / (`P_Q * emis_coef); //ambient temperature in degees Kelvin
V(out) <+ sin (2 * `M_PI * freq * $abstime); // at current simulation time
$strobe(“Simulation time = %e”, $abstime); // at current simulation time
thermal_voltage = $vt; // at current simulation temperature
vt_temp = $vt(76); //thermal voltage at 76 degees Kelvin

4. ac_stim(), white_noise(), flicker_noise(), noise_table(): Used for small-signal noise modeling.

Example: I(diode) <+ white_noise(2 * `P_Q * I(diode), “source1”);

5. $bound_step(): Limits the timestep for the simulation, but does not force a point at any particular time.

Example: $bound_step(10n);

 PLATFORM APPLICATION NOTE 8

4 ANALOG MODELING CONSIDERATIONS
Good behavioral modeling should consider how the analog simulator will interpret the model and work at the various
conditions required, whether it be the circuit, temperature, supply, or process change. If possible, discontinuities should be
anticipated and avoided to minimize non-convergence and decrease simulation time. Common desired analog effects can
be achieved by carefully studying what is needed and then taking a macro-model approach to creating the model. Modeling
can start from a simple top-down functional model to a detailed bottom-up model that closely resembles the transistor circuit.

4.1 Continuity in Analog Behavioral Modeling

The analog simulator uses a Newton-Raphson iteration method to solve for non-linear electrical components. If the
equations are not continuous, the simulator may not converge on a solution. When the simulator estimates the timestep and
error, it assumes there is continuity. If it is not continuous, it may take a long time to converge, or not do so at all. So, a
continuous equation is better than a piecewise-linear or discontinuous equation. For linear feedback systems, analog
dependencies should be continuous values with the derivatives continuous, and the signal monotonic. Step functions should
be used only while driving circuits with some capacitive load.

In the analog circuits, electrical signals tend to be continuous and smoothly shaped. When signals are simplified to be piece-
wise, often less accuracy is possible and the results can have sharp corners and steps. The modeling efficiency can then be
judged by having continuous signals with longer time constants as being fast and abrupt signals or short time constants as
slow, discontinuous, and prone to convergence failures. When modeling an ideal discontinuity, it is easy to block the regions
of discontinuity. For finer detail, it is better to consider smoothing functions, such as a spline transitions. Spline transitions
are easy to implement and will create a more natural output. See figures 1 and 2 for examples of different spline and
hyperbolic tangent transitions.

Figure 1 – Using Spline Transition Smoothing

analog function real Icubefn;
input x; K; real x.K;
Icubefn = (x<=0) ? 1 : (x>=1) ? K : pow(K,(3-2*x)*x*x);
endfunction

analog function real cubefn;
input x; real x;
cubefn = (x<=0) ? 0 : (x>=1) ? 1 : (3 -2*x)*x*x;
endfunction

analog function real sinfn;
input x; real x;
sinefn = (x<=0) ? 0 : (x>=1) ? 1 : x-sin(`twopi*x)/`twopi;
endfunction

Icubefn(x,100K)

cubefn(x)
sinefn(x)

 PLATFORM APPLICATION NOTE 9

Figure 2 – Using Adjustable Hyperbolic Tangent Smoothing

It is important to limit the timestep and frequency where there are fast transitions (<1pS), or high pole frequencies (>1THz)
which will cause very tiny timesteps and long simulation times. Consider realistic rise and fall times (>1nS) and bandwidth
responses (<10MHz), which may help reduce the simulation time. It is possible that just one circuit block with a high
frequency oscillation can have a dramatic impact, pulling the whole simulation down. Timestep and breakpoint controls can
also be helpful improving the waveshaping accuracy. Both time and voltage tolerances can also be used to window-in
thresholds and avoid overstepping sharp nonlinearities. This is explained in detail in the Verilog-A user�s guide.

An example of timestep and breakpoint controls:

1. Input threshold detection: @(cross(expression, direction, time_tolerance, voltage_tolerance)) statement;

2. DC state & transient edge: @(above(expression, time_tolerance, voltage_tolerance)) statement;

3. Output timestep control: @(timer(next_time)) statement; or $bound_step(time_increment);

The modeling of a switch is a good example whether to use a sharp or smooth transition. When
a switch is ideal, it could cause trouble working correctly in all conditions. A good practice is to
include realistic effects for impedances and sweep characteristics. Table 1, below, shows some
of the tradeoffs.

RANGE OF SWITCH IMPEDANCE CHANGE SIMULATOR EFFECT

An ideal switch going from zero to infinite Non-convergence

Extreme max & min values (1015 to 10-6 ohms) Numerical problems

Reasonable values (10+7 to 1 ohm) Efficient evaluation

Simulator default (GMIN = 10-12) Roff <= 1012 ohms

Numerical limit: GMAX = GMIN * 1014 Ron >= 0.01 ohms

SWITCH SWEEP IMPEDANCE BETWEEN LEVELS

Step resistance change Non-convergence

Linear transfer function (R vs. Vcontrol) Center = Roff/2

Logarithmic or Log-Cubic function Center = sqrt(Ron * Roff)

Table 1 – Switch Impedances vs. Simulator Effects

tanhc(x,1) tanhc(x,-1)

tanhc(x,0.5) tanhc(x,-0.5)
analog function real tanhc;
 input x,c; real x,c;
 tanhc = tanh(c==0? x : c>0?
 x*(1+c/3*x*x) :
 x*pow(1-c*x*x,-0.3333));
endfunction

analog function real ftanhc;
 input x,gain,ios,lo,hi,c; real x,gain,ios,lo,hi,c,dv;
 begin
 dv=(hi-lo)/2;
 ftanhc = lo+dv*(1+tanhc(gain/dv*(x-ios),c));
 end
endfunction

 PLATFORM APPLICATION NOTE 10

4.2 Modeling Common Analog Effects

Modeling amplifiers are likely to be one of the most basic, but challenging models to add extra effects to. The amplifier
output can be as simple as a gain stage multiplying the input. Included can be input offsets, slew rate, small-signal
frequency response, input and output impedances, and signal clipping. Output impedances can be fine-tuned to track
closely real circuit effects. In addition, effects from power supply, temperature, and process can be added. Taking into
consideration accurate DC transfer effects, curve fitting the output from a clipped to hyperbolic tangent response may be of
interest, as explained in section 4.1 of this document.

Figure 3 – Amplifier DC Transfer Choices

analog function real fcube;
 input x,L,H; real x,L,H,arg;
 begin
 arg = x/(H-L) / 1.5 + 0.5;
 fcube = (arg<0)? L : (arg>1)? H : L+(H-L)*(3-2*arg)*arg*arg;
 end
endfunction

INPUT

TRANSFER

OUTPUT Output

VREF

power supply

In+

In-
Gain

Clipped

Hyperbolic
Tangent

Cubic

All three functions
output center for

input zero

`define clip(x,L,H) min(H,max(L,x+(H+L)/2))

analog function real ftanh;
 input x,L,H; real x,L,H,dv;
 begin
 dv=(H-L) / 2;
 ftanh = L+ dv*(1+ tanh(x/dv));
 end
endfunction

Ideal
Digital

Ideal
Analog

A = `clip(40*Vin,-9,9);
B = fcube(40*Vin,-9,9);
C = ftanh(40*Vin,-9,9);

 PLATFORM APPLICATION NOTE 11

Figure xx – Modeling Hystersis

Figure 4 – Including Hysteresis

When passing the signal to the output of a model, it is almost always necessary to use a transition statement, which in some
cases makes it easier for the simulator to converge on a solution. The transition statement can work from a discrete digital
input and waveshape. The delay, rise, and fall times can be added, which will define the digital signal at the output in an
analog simulation.

Figure 5 – Using Transition Limiting

Transient output waveshaping can be done with RC and the Laplace transfer.

Td

Vin Vout

Tr Td Tf

Vout = $transition(Vin,Td,Tr,Tf);

Vio-Hys Vio+Hys

Downward
path

Upward
path

module Vhys(in,out);
 input in; output out; electrical in,out;
 parameter real K=40, Vos=0, Vhys=0.1;
 parameter real Vol=-9, Voh=9;
 real Vo,Offset;
 `include “simple.fun”
 analog begin
 @(initial_step) Offset = Vio+Vhys;
 Vo = fcube(K*(Vin-Offset), Vol, Voh)
 if (Vo==Vol) Offset = Vio+abs(Vhys);
 if (Vo==Voh) Offset = Vio-abs(Vhys);
 V(out) <+ Vo;
 end
endmodule

 PLATFORM APPLICATION NOTE 12

RC direct behavioral implementation:
I(N) <+ V(N)/Ro -V1/Ro +Co*ddt(V(N));

Equivalent Laplace voltage transfer relationship:

V(N) <+ laplace_zp(V1, {}, {-1/(Ro*Co),0});

Figure 6 – Using RC and the Laplace Transfer

The output can be conditioned with slew rate limiting.

Figure 7 – Using Slew Rate Limiting

The output can be expressed as resistance or conductance, and DC and impedance characteristics can be defined.

V1/Ro

N I(N)

V(N)

Ro Co

1 2 3

Vout = $slew(Vin, SRpos, SRneg);

RoCo

V1 V(N)

SRpos

Vin Vout

SRneg

3 2 1

 PLATFORM APPLICATION NOTE 13

Figure 8 – Modeling Output Impedances

Separate active and saturated resistance can aid in shaping the output. By using a ftanh() function as described can limit the
input current. An `fclip function can, as defined, produce well-defined diode-like voltage limiting, with zero voltage at isat. A
capacitor can be added for simple pole low-pass response. Limiting the current driving the capacitor can act as slew rate
limiting. The DC active region output resistance is Ro+Rac, and saturated and AC output resistance is Rac.

Figure 9 – Using Separate Active and Saturated Resistance

Rac

RoVoc/Ro

V(out)

I(out)

Co

N

If (Ro>1) I(out) <+ (V(out)-Voc)/Ro;
else V(out) <+ Voc + I(out)*Ro;

I(N) <+ (V(N) - Voc)/Ro + Co*ddt(V(N));
I(out,N) <+ V(out,N)/Rac;

R

out

C

Rac
N

cur res cap lim

I(lim) <+ `fclip(V(lim)-Voh,Isat,0.1) - `fclip(Vo)V(lim),Isat,0.1);

I(cur) <+ ftanh(-Vnom/Ro,Isat,-Isat);

`define fclip(V,isat,dV) isat*exp(4.6*(V)/dV)

isat

0 -dV
V

fclip

isat/100

V(out)

I(out)

Voc

Ro

RoVoc/Ro

V(out)

I(out)

 PLATFORM APPLICATION NOTE 14

Figure 10 – Simple Amplifier Verilog-A Model

Resistor-dividers can be used to model the output impedance.

module simpleAmp(inp,inm,out);
input inp,inm;
output out;

electrical inp,inm,out,N,gnd;
branch (N,gnd) cur, res, cap, lim;

parameter real Gain=1k; // gain of amplifier
parameter real Vio=0; // input offset
parameter real Voh=5; // output high voltage
parameter real Vol=0; // output low voltage
parameter real GBW=10M; // gain bandwidth
parameter real SR=20M; // slew rate
parameter real Rdc=300; // output resistance DC
parameter Rac=100; // output resistance AC

real Ro, Co, Isat, Vnom; // establish internal variables used in expressions

`define fclip(V,isat,dV) isat*exp(4.6*(V)/dV) // define a parameterized expression

analog function real ftanh; // define a tanh function for output smoothing
input x,L,H; real x,L,H,dv;
begin
dv=(H-L) / 2;
ftanh = L+ dv*(1+ tanh(x/dv));
end
endfunction

analog begin
@(initial_step) begin // to establish initial fixed constants
Ro = Rdc-Rac;
Co = 1/(`M_TWO_PI*Ro*GBW/Gain);
Isat = Co*SR;
end

Vnom = Gain*(V(inp,inm)-Vio); // output voltage gain expression
V(gnd) <+ 0; // establish ground reference, actually not need with Verilog-A coding
I(cur) <+ ftanh(-Vnom/Ro,Isat,-Isat); // pass current using tanh smoothing function
I(res) <+ (V(res)-(Voh+Vol)/2)/Ro; // pass output current
I(cap) <+ ddt(Co*V(cap)); // pass current effects from output capacitance
I(lim) <+ `fclip(V(lim)-Voh,Isat,0.1) - `fclip(Vol-V(lim),Isat,0.1); // limit output swing
I(out,N) <+ V(out,N)/Rac; // add current from output impedance

end

endmodule

 PLATFORM APPLICATION NOTE 15

Figure 11 – Using Resistor Dividers to Model Output Impedance

There are other effects that can also be modeled, such as additional enable control pins, input impedance and range
limitations, power supply current, parametric supply variations, response to common mode or supply interference, power-on
or off conditions, and warning messages to indicate invalid operating regions. There are many choices as far as specialized
effects to model. But, with complexity, there are tradeoffs. For example, output impedances modeled in a nonlinear fashion
may decrease simulation efficiency. This may also involve more time to develop, extract parameters, and simulate. One
must decide what level of modeling is needed and what is not important. If necessary, you can create both simple and
complex models.

4.4 Modelwriter

Modelwriter is a model utility that is menu driven and allows ready use of a generic model that can be parameterized, placed
in the schematic, and used. There are 11 Cadence library categories:

• Analog Models

• Components

• Continuous Time

• Discrete Time

• Instruments

• Interface

• OpAmp Models

• PLL Components

• Sources

• System Level

• Telecom

// Given relative output level of Kout = 0 to 1.
// Gx term allows additional current at midpoint.
Gx = Kout*(1-Kout)*Ipk/VpsNOM+1n;
I(VCC,Y) <+ V(VCC,Y)*(Kout/Roh+Gx);
I(Y,VEE) <+ V(Y,VEE)*(1-Kout)/Rol+Gx);

Vcc

Vee

RH=Roh

RL=big

Vo = Vcc

Vcc

Vee

RH=big

RL=Rol

Vo = Vee

Resistors for
High Output

Resistors for
Low Output

Vcc

Vee

RH

RL

Vo = Vee+(Vcc-Vee) RL
RH+RL

General
Resistor
Topology

 PLATFORM APPLICATION NOTE 16

Figure 12 – Modelwriter™ User Menus and Automatically Created Verilog-A Model

5 VERILOG-D LANGUAGE OVERVIEW
Verilog-D is an event-driven language that supports behavioral as well as structural modeling. It is interrupted and runs with
the simulator or Incisive-AMS. The digital simulator evaluates all events in the current time. Some events can be schedule
additional events at the current or a future time. The simulator timesteps continue until all events are complete. The
language contains only the concept of going forward, and multiple events can occur at the same timepoint.

 PLATFORM APPLICATION NOTE 17

Figure 13 – Modeling a Data Flip-Flop with Verilog-D

5.4 Common Language Constructs and Statements

Verilog-D carries common language constructs, primary module statements, and event-driven constructs. Table 3, below,
lists a sample of the most common.

Verilog-D Constructs Definitions

`timescale 1ns / 10ps Defines time units (1nS0 and minimum digital timestep (10pS)

parameter n=2, y=2.0; Defines an integer (2) and a real parameter (2.0) denoted by decimal place

reg A, B; A reg is a 1-bit digital variable

C=1�bx; D=4�b1001; Binary value specification format

reg[0:15] X[0:1023]; Declare a 1K by 16bit memory

Primary Statements

Initial begin … end Executed only once at the beginning of the simulation, multiples run concurrently

Always begin …end Executed repeatedly throughout the simulation, multiples run concurrently

Assign P = <expression> Assigns a definition to an output pin with known registers, can�t be assigned to other

Event-Driven Constructs

#2.1 Time delay before continuing (in `timescale units)

@(event) Occurs only on the event

@(posedge a or negedge b) Wait until the specified edge of either signal

@(a or b) Wait until either single changes

wait(a & b) Wait until the expression becomes true

Table 3 – Example of Common Verilog-D Constructs

Symbol
 Data Q

Qb Clock
Reset

DFF1
Actual Verilog-D Code
module DFF1 (Q,Qb,Data,Clock,Reset);
 output Q,Qb; input Data,Clock,Reset; // signals assume single-bit
 parameter Qinit = 0; // digital default
 reg Q; // a `reg’ is a 1-bit variable
 initial Q=Qinit; // initial section evaluates just once

 always @(posedge(Clock)) // Always is a loop that runs constantly:
 if (!Reset) Q=Data; // wait for positive clock edge, then
 // if the Reset signal isn’t high, set
 // register Q to equal the Data input.
 always @(posedge(Reset)) Q=1’b0; // wait for positive edge of Reset,
 // then set Q to equal zero (1-bit bin)
 assign Qb = ~Q; // define Qb to be a logical inversion of
endmodule // Q . Qb updates whenever Q changes.

Description
Initially, set Q to Q initial.
At each Clock positive edge,
if Reset is not high,
 then set Q to Data.
At each Reset positive edge,
set Q low.
Qb is always the inverse of Q.

 PLATFORM APPLICATION NOTE 18

5.5 Verilog-D Examples

Figure 14 – Example of Basic Verilog-D Module

 Figure 15 – Example of Basic Verilog-D Counter Expressions

module counter4
 (result, clock, asynch_reset);
 input asynch_reset, clock;
 output [3:0] result; // Output is a 4-bit bus (MSB:LSB)
 reg [3:0] result;

 initial result = 1'b0;

 always @ (posedge clock or // Execute code whenever either leading
 posedge asynch_reset) begin // edge is detected.
 if (asynch_reset) result = 1'b0;
 else if (result == 4'd15) result = 1'b0;
 else result = result + 1'b1; // Arithmetic operation on bus value

a

b

se

c
0 5 10 15 20

Test_Input Outputs
`timescale 1ns / 10ps;
module Test_Input (a,b,sel,ck);
output a,b,sel,ck;
reg a,b,sel,ck;
initial begin
 a=0; b=1; sel=0; ck=0;
 #5 b=0;
 #5 b=1; sel=1;
 #5 a=1;
 #5 $finish;
end
always #3 ck=~ck;
endmodule

 PLATFORM APPLICATION NOTE 19

 Figure 16 – Example of Verilog-D 4-Bit Counter

`timescale 1ns / 100ps

module Count4bit_d(up,dn,ck,res,q0,q1,q2,q3,ov);
 input up,dn,ck,res;
 output q0,q1,q2,q3,ov;
 parameter Edge=1; // clock edge to trigger on
 parameter Kinit=0; // initial/reset output level
 parameter Td=1.0e-9; // input-to-output delay time
 reg [3:0] q; // 4-bit output
 reg Kov,ckHi; // overflow bit, ck after edge
 initial begin
 ckHi = (Edge==1)? 1:0; // clock state after edge
 q = Kinit; Kov = !ckHi; // initialize clock & overflow
 end
 assign q0 = q&1; // assign outputs to pins
 assign q1 = (q>>1)&1;
 assign q2 = (q>>2)&1;
 assign q3 = q>>3;
 assign ov = Kov;
 always @(ck) begin // on any clock edge,
 if (ck==ckHi && !res) begin // if correct edge & not reset:
 if (q==15 && up && !dn) begin // check for overflow
 #(Td/1.e-9) q=0; Kov=ckHi;
 end
 else if (q==0 && !up && dn) begin // check for underflow
 #(Td/1.e-9) q=15; Kov=ckHi;
 end
 else begin // normal increment or
decrement
 #(Td/1.e-9) q=q+up-dn; Kov=!ckHi;
 end
 end
 else Kov=!ckHi; // clear overflow on other
edge
 end
 always @(posedge res) begin // asynch reset
 #(Td/1.e-9) q = Kinit;
 Kov = !ckHi;
 end
endmodule

Count4bit
Outputs

Verilog-D
4-bit counter

Example

 PLATFORM APPLICATION NOTE 20

6 VERILOG-AMS LANGUAGE OVERVIEW
The Verilog-AMS language is a combination of both Verilog-D and Verilog-A statements that run in Incisive-AMS. There are
two types of domains in Verilog-AMS: Discrete and Continuous. Discrete is for digital circuits, and continuous is reserved for
analog circuits. The two domains are partitioned and co-simulated with their respective solver. Interface Elements (IEs) are
automatically placed between analog and digital blocks when simulated. All analog and mixed-signal modules require that
ports and nodes associated with respective behavioral code have disciplines declared for them. See example below.

In general, digital behavior is defined in
the initial or always blocks, and analog
in a single analog block. There can be
only one analog block, but many digital
blocks. Continuous time signals can
only be written from within the analog
block, and discrete time signals are
written outside the analog block.
Analog variables can appear in digital
expressions and digital variables can
be used in analog expressions.

Mixed-signal models are not just
Verilog-D and Verilog-A. They are
combined into one model. This can
result in design free interface elements
(IEs) which are more closely controlled
within the model. Mixed-signal blocks
can be all behavioral, all structural, or
any combination. The full capabilities
of both Verilog-D and Verilog-A can be
realized using Incisive-AMS. The
digital and analog sections interact by
sharing data and controlling each
other�s events. This allows for event
driven analog blocks. Verilog-D can
extend to support real value nets,
which are called wreal.

module verilog-ams_example (a,b,c,d); // module name / pins
 input a,b,c; // port declarations
 output d;
 electrical a,b,d,e; // analog discipline
 logic c; // digital wire type
 parameter load = 100 from (0:1k); // analog parameter
 real x; //variable declarations
 ground b; // digital global ground node

 resistor #(.r(load)) rout(e,d); // structural description

 initial begin // initialize variable to something other than �0�
 x=1;
 end

 always @(posedge(c)) begin // digital behavior block
 x=(x<12 ? x+1 : 1); // digital event
 end

 analog begin // analog behavior block
 @(cross(V(a) -2.5, 1)) // analog event
 V(e) <+ (V(a) - V(b)) * x; // mixed signal interaction
 end
endmodule // end of model declaration

 PLATFORM APPLICATION NOTE 21

Figure 17 – Using Wreal to Create an Analog Effect in the Digital Domain

Figure 18 – Using Wreal to Do a Frequency-to-Voltage Conversion

With Incisive-AMS there is a closer connection between the analog and digital solver. In the past, the interprocess
communication (IPC) with Verimix� was slower and limited.

 On leading edge of digital signal ...

Or on trailing edge ...

Out pin is real value following Freq value.

module F2V_ams (In,Out);
 input In; logic In; output Out; wreal Out;
 parameter real Vnom=1, Fnom=1M;
 real Tup,Tdn, Freq;

 initial begin
 Tup=0; Tdn=0; Freq=Fnom;
 end
 always @(posedge In) begin
 if (Tup>0) Freq = 1/($abstime-Tup);
 Tup=$abstime;
 end
 always @(negedge In) begin
 if (Tdn>0) Freq = 1/($abstime-Tdn);
 Tdn=$abstime;
 end
 assign Out = Freq*Vnom/Fnom;
endmodule

Freq (digital)
All-digital model
Wreal output
No effect on analog
portion of the simulation

VIN

 PLATFORM APPLICATION NOTE 22

7 AVAILABLE CADENCE ONLINE DOCUMENTATION
• Cadence Verilog-AMS Language Reference Analog and Mixed-Signal constructs

• Cadence Verilog-A Language Reference Verilog-A language for Spectre

• Cadence AMS Simulator User Guide Operation of AMS Simulator

• Cadence AMS Environment User Guide Using AMS from DFII

• Verilog-XL Reference Verilog-D language

• Cadence NC-Verilog Simulator Help NC-Verilog language limitation and enhancements

• Cadence NC-Verilog Simulator Tutorial Tutorial on NC environment

8 REFERENCES
[1] Ron Vogelsong. AMS Behavioral Modeling Workshop, Cadence User�s Group Meeting, 2002.

[2] Analog Modeling with Verilog-A, Training Manual 4.4.6, Cadence Educational Services, 2001

[3] Dan Fitzpatrick, et al. Analog Behavioral Modeling with the Verilog-A Language, Kluwer, 1998.

© 2003 Cadence Design Systems, Inc. All rights reserved.
Cadence and the Cadence logo are registered trademarks
of Cadence Design Systems, Inc. All others are properties
of their respective holders.

