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  PLATFORM APPLICATION NOTE 1

CADENCE INCISIVE VERIFICATION PLATFORM 
Verifying today�s complex ICs requires the speed and efficiency that can be provided only in a unified verification 
methodology. The Cadence Incisive� verification platform enables the development of a unified methodology from system 
design to system design-in for all design domains. A unified verification methodology consists of many different tools, 
technologies and processes all working together in a common environment. The Incisive verification platform provides the 
tools, technologies, a common user environment, and the support needed to develop a unified methodology. This 
application note details specific topics for using the tools and technologies in the Incisive platform to help create a unified 
methodology to verify your design.  

 

1     APPLICATION NOTE OVERVIEW 
Analog behavioral modeling can help speed up verifications for larger, complex circuits where simulations are longer and 
more difficult to complete. This application note is an introduction to analog behavioral modeling using Verilog-A running in 
Spectre�. It gives examples to help you understand the basic modeling concepts. It also includes explanations of Verilog-D 
and Verilog-AMS, which is a true fully analog mixed-signal language working with Incisive�-AMS. Most of the content in this 
application note was derived and summarized from the AMS Behavioral Modeling Workshop (see reference [1]).  

 

2     INTRODUCTION  
Analog Behavioral Modeling deals with creating and simulating models based on a desired external circuit behavior. Models 
are best used to represent circuit block behavior and not simply replicate individual transistor characteristics. Models can be 
as complex as necessary. Often, initial behavioral models need to carry only the basic properties, such as an operational 
amplifier might have voltage swings, impedances, and gain. In other cases, there might be a need to model slew rates, 
differential signals and bandwidth properties. Adjustable parameters can be added to model and preview design tradeoffs in 
a circuit. The more complex a model is, the more impact it will have on the simulation time and convergence. It is important 
to consider what tradeoffs are important and necessary before starting to write a model. Creating a detailed macro-model is 
often an important first step in determining what to model, rather than using a trial and error approach. There are six main 
reasons to consider modeling: 

•  Design exploration 

•  Verify connectivity 

•  Verify functionality 

•  Speed up simulations 

•  Reuse in future designs 

•  To create a portable design IP 

Modeling is best when used early in the design cycle. 

Analog behavioral modeling is part of a wider design methodology called �top-down design.� This may seem obvious, but 
there are a number of aspects that require careful consideration to take full advantage of modeling. Top-down design starts 
with creating a hierarchical design. This is a common design practice today, especially for large designs. However, the key 
is to make all circuit blocks in the hierarchy pin-to-pin compatible so that each can be represented by either a model or an 
actual transistor-level circuit block. Later, the views can be toggled between model and transistor for mixed-level simulation. 
One of the biggest advantages of using modeling is to take well-behaved transistor-level circuit blocks that are slow to 
simulate, and switch them to a model to shorten simulation time. Sub-circuit blocks not in the signal path, such as PLLs, lend 
themselves well to being run as a model because they have well-behaved feedback properties. In other cases, modeling the 
entire design might be of interest to run system-like simulations for architectural exploration while designing the IC. With 
hierarchical design, it is possible to create models at any level of the hierarchy. Generally, the higher the level of modeling, 
the faster the simulation runs. In addition, it is also possible to represent digital functional and behavioral models in Verilog-
A. Where there is only a small number of digital blocks, it is advantageous to represent these in Verilog-A. This cuts down 
on the overhead of having a mixed-mode simulator. In other cases, where there is a large Verilog-A, models lend 
themselves well to creating basic signal sources and measurement blocks in testbenches. This is especially true for wireless 
systems where pseudo-random signal sources can be easily set up and where measurement blocks can calculate Bit Error 
Rates (BER) or plot Eye Diagrams after a long simulation. 

Another important aspect of modeling is �bottom-up� modeling�taking finished transistor-level circuit block results and 
exactly modeling them. This may require some effort and characterization. Sometimes the behavioral model is simply a 
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matter of writing a few mathematical expressions. In other cases, it might require curve fitting of non-linear behavior in all 
modes of operation. Look-up tables can also be used. The end result is a close replica of the transistor-level circuit block, 
which can be used with confidence and reused in other designs. Over time, commonly used blocks that go through this 
process can create a reuse library that will greatly enhance simulating designs that otherwise would take longer. The one 
common goal in modeling is to eventually simulate top-level behavior. The other is to determine if it is correctly wired and if it 
works. Top-level simulations of large IC designs are often not possible without some type of modeling.  

Admittedly, most integrated circuit designers do not like modeling. It takes some skill to write models and there is no time for 
designers to write models. Some think model writing is boring or that modeling will never be accurate enough to use. But 
these points are only partially true. In the initial design phases, second and third order effects, especially from layout 
parastics, are not needed for functional simulations. These can be added later as needed. To really do modeling well, it will 
take some time to master. However, to learn the basics and to reuse and adapt previously written models is not difficult. The 
Verilog-A language constructs are basically simple to follow by example. A designer can extend a set of design aids 
tremendously with modeling. And because Verilog-A is a standardized language, it is portable between simulators and can 
have wide adoption. Learning Verilog-A is very worthwhile for many designers.  

 

3 VERILOG-A LANGUAGE OVERVIEW 
Verilog-A was derived from Verilog HDL in 1996 by the Open Verilog International (OVI) organization, and was later 
extended to Verilog-AMS. Verilog-AMS is based on Verilog-A and Verilog-D, which are covered in IEEE standards 1364-
1995. OVI, which is now called Accellera, approved Verilog-AMS version 2.0 in January 2000. Verilog-AMS is a superset of 
Verilog-D and Verilog-A and a true mixed-language, where both are written into a model. Many of the Verilog-A constructs 
are the same in Verilog-AMS, with minimal differences. Verilog-D in Verilog-AMS is extended to support both Verilog-A and 
Verilog-AMS connections. 

Verilog-AMS is a true mixed-signal language, interacting with the analog and digital sections by an Application Program 
Interface (API) between the analog and digital simulators. Verilog-AMS is designed to work well in Incisive-AMS, a fully 
capable mixed-signal simulator. Interface elements (IEs) connect the two disciplines and are automatically inserted by the 
simulator based on a relationship defined by the discipline.  

3.1  LANGUAGE BASICS 

Before going into Verilog-A modeling examples, it is important to understand some of the language basics. Verilog-A has the 
ability to model a variety of disciplines, the most common of which are electrical, magnetic, thermal, kinematic, and 
rotational. You can also define your own disciplines. For the most part, the electrical discipline, which is expressed as 
voltages and currents, is used primarily for integrated circuit modeling. Along with disciplines, there 
are three basic modeling styles: Conservative, Signal-Flow, and Event. The Conservative modeling 
style includes both a potential and a flow. For an electrical system, these would be voltage and 
current, respectively. The Signal-Flow model includes only a potential. This is useful for high-level 
modeling or in cases where there is no need to express a current in an electrical discipline. The 
third style is Event models, which only evaluate events. This is useful in digital, mixed-signal, and 
high-level models. Verilog-AMS allows any combination of these modeling styles. Using Kirchhoff�s law, Nodes are defined 
as being where branches interconnect and branches are the paths between nodes. Disciplines are described by Natures, 

which describe the tolerance (abstol), evaluated units (units), and name (access). Usually, 
Disciplines and Natures are described in a file called 
disciplines.h (disciplines.vams for Verilog-AMS) which 
is included during netlisting. These can also be 
included in the actual model file. A constants.h 
(constants.vams for Verilog-AMS) file. The constants.h 
file which carries commonly used mathematical and 

physical constants is also included. Mathematical constants have an `M_ prefix and 
physical constant `P_ prefix (examples: `M_TWO_PI = 2π and `P_Q = Q). 

Verilog-A modules have pin connections (called ports) and behave like any 
component in a circuit, such as a transistor or resistor. The syntax of the model file, 
outside of including the disciplines.h and constant.h files, starts with a module 
declaration which carries the module name and declared pin names. The pin 
connections have declared port directions and disciplines. In IC design, the 
discipline will likely be electrical, but there are cases where only a voltage or current 
will be used. In other cases, cross-discipline models can be described where 
electrical is coupled to magnetic and rotational disciplines. An example of this could 

Nature Voltage 
   abstol = 1u; 
   units = �V�; 
   access = V; 
  huge = 1e5; 
endnature 

Discipline electrical 
   domain = electrical;
   potential = Voltage;
   flow = Current; 
enddiscipline

include �disciplines.h� 
include �constants.h� 
 
module rlc (a,b); 
   electrical a,b; 
   parameter R=1 exclude 0; 
   parameter C=1; 
   parameter L=1 exclude 0; 
  branch (a,b) res, cap, ind; 
    
analog begin 
   I(a,b) <+ idt(V(a,b))/L; 
 V(res) <+ R*I(res); 
 I(cap ) <+ C*ddt(V(cap)); 
end 
 

endmodule; 
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be a disk drive controller. Parameter declarations follow which optionally allow the parameter to be passed from module to 
schematic without editing the model file. Where components share the same nodes and are often referenced, a branch 
statement can provide a name to each branch. If there are variables used in the model, such as real and integers, these 
need to be declared before use. Variable names must start with a letter or _, and are case sensitive.  

The analog begin line is where analog behavior begins. Often, this section is where voltage and currents from outside pins 
are sensed, checked for signal crossings, mathematically conditioned, then pushed back out to the circuit or stored in a file. 
The equals sign (=) is used to equate relations evaluating a new value with each step of the simulator. The simulator 
interprets the model in sequential steps. For example, at each timestep for a transient, each relationship is evaluated and 
can depend on previous lines. Inside a controlled loop, such as conditional expressions, all expressions are evaluated 
together and dependent on outside the loop. The Contribution Operator (<+) is a line in the model that passes conditioned 
signals back to the rest of the circuit being simulated. This can be additive, such that there could be multiple expressions 
passing signals to the same outside pin. All lines in the model file end with a �;� except basically, begin, else and end 
statements. The model file is closed with an endmodule statement.  

3.2   Mathematical Functions and Operators 

Verilog-A has mathematical functions and operators which include standard mathematical functions (standard math, 
logarithms, trigonometry, hyperbolics), random numbers (uniform, Gaussian, exponential, Poisson, chi-squared, students-T, 
Erlang), analog operators (derivative, integral, analog delay), and analog filters (transition, slew, Laplace, Z).  

There is a standard set of operators in Verilog-A similar to other programming languages to write expressions. Built-in math 
functions cover a set of commonly used relationships. Analog Operators can evaluate derivatives and integrals which often 
occur in signal conditioning along with adding built-in time delays.  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Verilog-A Operators 
 

+  plus    
-  minus 
*  multiply 
/  divide 
%  modulus 
< less than 
> greater than 
<= less than, equal to 
>= greater than, equal to 
!== case inequality 
=== case equality 
!= logical not equal 
(?:) ternary 
== logical equal 
! logical negation 
&& logical and 
|| logical or 
~ bit negation 
& bit and 
| bit or 
^ bit xor 
^~,~^ bit equivalence 
<< left shift 
>> right shift 
or event or 

 
 

Verilog-A Built-In Math Functions 
 

Function Description Domain 
ln(x)  natural log x>0 
log(x)  decimal log x>0 
exp(x)  exponential x<80 
sqrt(x)  square root x>=0 
min(x,y)  minimum all x, all y 
max(x,y) maximum all x, all y 
abs(x)  absolute all x 
pow(x,y) power xy if x>=0, all y 
    if x<0, int(y) 
floor(x)  floor  all x 
ceil(x)  ceiling  all x 
sin(x)  sine  all x 
cos(x)  cosine  all x 
tan(x)  tangent  x !=n(π/2), n is odd 
asin(x)  arc-sine  -1 <=x<=1 
acos(x)  arc-cosine -1 <=x<=1 
atan(x)  arc-tangent all x 
atan2(x,y) arc-tangent x/y all x, y, except 0 
hypot(x)  sqrt(x2 + y2) all x, y 
sinh(x)  hyperbolic sin all x 
cosh(x)  hyperbolic cos all x 
tanh(x)  hyperbolic tan all x 
asinh(x)  a-hyperbolic sin  all x 
acosh(x) a-hyperbolic cos  x=>1 
atanh(x)  a-hyperbolic tan  -1<=x<=1 
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3.3   Analog Operators 

Analog Operators, which maintain an internal state, produce a return value as a function of an input expression. Analog 
operators cannot be used in functions, repeat, while, or for statements. If if or case statements are used, the controlling 
expression must consist entirely of literal numerical constants, parameters, or the analysis function. The following is a list of 
analog operators: 

 

1. Differentiator: ddt(x)  

- Time derivative of its argument 

- For second derivative, use ! y = ddt(x), then z = ddt(y) 

 

2. Integrator: idt(x)  

- Time integral of its argument, with optional initial condition 

 Example: y = idt(x) + c;  

 

3. Circular Integrator: idtmod(x)  example 

- Time integral of its argument, passed through a 
modulus operation 

- Periodic integration 

 

4. Time Delay: absdelay(x) 

- Delayed argument 

 

5. Last Zero Crossing: last_crossing(x)  

- Time of last crossing  
 

6. Analog Transition Filter: transition(input_signal, time-delay, risetime, falltime) 

- Filters piecewise constant waveforms to piecewise linear 

- Adds delay, finite rise and fall times 

- Not for smoothly varying inputs, use slew 
filter instead 

 

7. Slew Filter: slew(input_signal, slew_pos, 
slew_neg) 

- Bounds the signal rate-of-change to the 
output 

Example: V(out) <+ slew(V(in), sr_pos, 
sr_neg); 

 

8. Laplace Filters 

- Linear continuous-time filter functions 

   (fixed poles and zeroes) 

- See user manual for further description 

 

 

Example: Analog D Flip-Flop 
 

module dff (q,d,clk); 
   voltage q, d, clk; 

input clk, d; 
output q; 
parameter real td=0 from [0:inf], tr=0 from [0:inf]; 
parameter integer dir=1 from [-1:1] exclude 0; 
parameter real Vdd=5 from (0:inf); 
 
integer state; 

 
analog begin 
   @cross(V(clk) – Vdd/2, dir) 
       state = (V(d) > Vdd/2); 
    V(q) <+ transition(state*Vdd,td,tr);   
end 
 

endmodule 

Example: Basic Sinusoidal VCO 
 
module vco(out,in); 
  voltage out,in; 
  parameter real k = 1M; 
  real phase, freq; 
            
  analog begin   
     freq = k*V(in);  
     phase = idtmod(freq,0,1);  
     V(out) <+ cos(2*`M_PI*phase); 
    $bound_step(1/(10*freq)); 
 end 

endmodule 
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9. Z Filters 

- Linear discrete-time filter functions 

   (fixed period, poles, and zeroes) 

- See user manual for further description 

 

3.4   Analog Event-Driven Modeling 

1. @ (event)  

- When an event edge is needed, an �@(event) command� is used to execute the command. The following table 
describes the most common event commands that can be used. 

 

Analog Event Types Description 

cross(expr,dir) At analog signal crossings 

above(expr) At signal low-to-high crossing, and when above at DC 

timer(time,dt) Periodically or at specific times 

Initial_step At the beginning of simulation 

final_step At the end of the simulation 

 

2. Cross Event Operator 

- Syntax: cross( expr, direction, timeTol, exprTol ) 

- Generates event when expr crosses 0 in a specified direction 

- Timepoint is placed just after the crossing, within tolerances 

- To know the exact time of crossing, use last_crossing( expr ) 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Example: Phase/Frequency Detector 
 

module pfd_cp (out, ref, vco); 
   current out; voltage ref, vco; 
   output out; input ref, vco; 
   parameter Iout = 100u; 
   integer state; 
 
analog begin 
    @(cross(V(ref)), +1) 
        if (state > -1) state = state � 1; 
    @(cross(V(vco)), +1) 
       if (state < 1) state = state +1; 
    I(out) <+ transition(Iout*state); 
end 
 

endmodule 

 exprTol

timeTol 
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3.5   Looping and Conditional Statements 

Verilog-A provides a complete set of loops and conditional statements. 

 

1. If-else: The If-else is a binary conditional set of statements under control of specified conditional expressions. 

if (expression1) statement1; 
     else if (expression2) statement2; 
else statement3; 
Example: 
if (x >= 1) y = 3; 
else if (x <= 1) y = 2; 
else y = 1; 
Result: y is binned between 1, 2, and 3 dependent on x 

 

2. The case expression controls of a series of statements to run depending on what the expression is equal to. 

case (expression)  
value1: statement1; 
value2: statement2; 
value3: statement3; 
default: statement; 
endcase 

Example: 
y = 2; 
case(y) 
1 : x = 5; 
2 : x = 1; 
default : y = 10; 
endcase 

Result: case 2 is selected where x=1 

 

3. The repeat loop statement runs for a fixed number of times as determined by the constant_value. 

  repeat (constant_value) statement; 

Example: repeat (5) begin I = I + 1; total = total + 1; end 
Result: The loop will repeat 5 times and total will = 5. 

 

4. The while loop statement is used when you want to leave the loop when an expression is no longer valid. 

  while (expression) statement; 

  Example: while (x>y) begin count = count + 1; end 
  Result: Conditionally, when x is greater than y, count will increment 1 each time. 

 

5. The for loop statement runs a fixed number of time. 

  for (initial_statement; expression; step_statement) statement; 

  Example: for (j=2; j > 22; j = j +2 ) total = total + j; 
  Result: Loop will execute and continue from j=2 to j=22 incrementing by 2 and then stop. 
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3.6 Simulator Interface Functions 

Verilog-A can provide conditional controls, information commands, and small-signal stimulus functions. 

 

1. analysis(): Analysis done on a condition basis 

Example:  
module cap1 (a,b); 
electrical a,b; 
parameter real c=0, ic=0; 
analog begin 
   if (analysis (�ic�))    " excute on transient IC analysis only 

       V(a,b) <+ ic; 
   else    " execute all other analyses 
      I(a,b,) <+ ddt(c*V(a,b)); 
   end 
endmodule 

 

2. $discontinuity(): Used to make a model discontinuity at current point. A discontinuity(0) announces a discontinuity in a 
descriptive equation. A discontinuity(1) indicates a discontinuity in the first derivative (slope) of the equation. 

Examples: 
analog begin 
    @(timer(0, wavelength)) begin 
        slope = +1; 
        wstart = $abstime; 
        discontinuity(1)  " “1” done for a negative to positive slope change 
     end 

        analog  
              @(cross(V(pin, nin) – 1, 0.01n)  discontinuity (0); " “0” used in an equation 

 

3. $abstime, $temperature, $vt, $vt(): These are environment functions that provide information about the current 
simulation environment.  

Examples: 
therm_volt = `P_K * $temperature / (`P_Q * emis_coef);  //ambient temperature in degees Kelvin 
V(out) <+ sin (2 * `M_PI * freq * $abstime);  // at current simulation time 
$strobe(“Simulation time = %e”, $abstime); // at current simulation time 
thermal_voltage = $vt;  // at current simulation temperature 
vt_temp = $vt(76); //thermal voltage at 76 degees Kelvin 

  

4. ac_stim(), white_noise(), flicker_noise(), noise_table(): Used for small-signal noise modeling. 

Example: I(diode) <+ white_noise(2 * `P_Q * I(diode), “source1” );  

     

5. $bound_step(): Limits the timestep for the simulation, but does not force a point at any particular time. 

Example: $bound_step(10n); 
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4 ANALOG MODELING CONSIDERATIONS 
Good behavioral modeling should consider how the analog simulator will interpret the model and work at the various 
conditions required, whether it be the circuit, temperature, supply, or process change. If possible, discontinuities should be 
anticipated and avoided to minimize non-convergence and decrease simulation time. Common desired analog effects can 
be achieved by carefully studying what is needed and then taking a macro-model approach to creating the model. Modeling 
can start from a simple top-down functional model to a detailed bottom-up model that closely resembles the transistor circuit. 

4.1 Continuity in Analog Behavioral Modeling 

The analog simulator uses a Newton-Raphson iteration method to solve for non-linear electrical components. If the 
equations are not continuous, the simulator may not converge on a solution. When the simulator estimates the timestep and 
error, it assumes there is continuity. If it is not continuous, it may take a long time to converge, or not do so at all. So, a 
continuous equation is better than a piecewise-linear or discontinuous equation. For linear feedback systems, analog 
dependencies should be continuous values with the derivatives continuous, and the signal monotonic. Step functions should  
be used only while driving circuits with some capacitive load. 

In the analog circuits, electrical signals tend to be continuous and smoothly shaped. When signals are simplified to be piece-
wise, often less accuracy is possible and the results can have sharp corners and steps. The modeling efficiency can then be 
judged by having continuous signals with longer time constants as being fast and abrupt signals or short time constants as 
slow, discontinuous, and prone to convergence failures. When modeling an ideal discontinuity, it is easy to block the regions 
of discontinuity. For finer detail, it is better to consider smoothing functions, such as a spline transitions. Spline transitions 
are easy to implement and will create a more natural output. See figures 1 and 2 for examples of different spline and 
hyperbolic tangent transitions. 

 

 

 

 

  

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 1 – Using Spline Transition Smoothing 

analog function real Icubefn;
input x; K;  real x.K; 
Icubefn = (x<=0) ? 1 : (x>=1) ? K : pow(K,(3-2*x)*x*x);
endfunction 

analog function real cubefn; 
input x; real x; 
cubefn = (x<=0) ? 0 : (x>=1) ? 1 : (3 -2*x)*x*x; 
endfunction 

analog function real sinfn;
input x; real x; 
sinefn = (x<=0) ? 0 : (x>=1) ? 1 : x-sin(`twopi*x)/`twopi; 
endfunction 

Icubefn(x,100K)

cubefn(x) 
sinefn(x)
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Figure 2 – Using Adjustable Hyperbolic Tangent Smoothing 

 

It is important to limit the timestep and frequency where there are fast transitions (<1pS), or high pole frequencies (>1THz) 
which will cause very tiny timesteps and long simulation times. Consider realistic rise and fall times (>1nS) and bandwidth 
responses (<10MHz), which may help reduce the simulation time. It is possible that just one circuit block with a high 
frequency oscillation can have a dramatic impact, pulling the whole simulation down. Timestep and breakpoint controls can 
also be helpful improving the waveshaping accuracy. Both time and voltage tolerances can also be used to window-in 
thresholds and avoid overstepping sharp nonlinearities. This is explained in detail in the Verilog-A user�s guide.  

An example of timestep and breakpoint controls: 

1. Input threshold detection: @(cross(expression, direction, time_tolerance, voltage_tolerance)) statement; 

2. DC state & transient edge: @(above(expression, time_tolerance, voltage_tolerance)) statement; 

3. Output timestep control: @(timer(next_time)) statement; or $bound_step(time_increment); 

 

The modeling of a switch is a good example whether to use a sharp or smooth transition. When 
a switch is ideal, it could cause trouble working correctly in all conditions. A good practice is to 
include realistic effects for impedances and sweep characteristics. Table 1, below, shows some 
of the tradeoffs. 

 

RANGE OF SWITCH IMPEDANCE CHANGE SIMULATOR EFFECT 

An ideal switch going from zero to infinite Non-convergence 

Extreme max & min values (1015 to 10-6 ohms) Numerical problems 

Reasonable values (10+7 to 1 ohm) Efficient evaluation 

Simulator default (GMIN = 10-12) Roff <= 1012 ohms 

Numerical limit: GMAX = GMIN * 1014 Ron >= 0.01 ohms 

SWITCH SWEEP IMPEDANCE BETWEEN LEVELS  

Step resistance change Non-convergence 

Linear transfer function (R vs. Vcontrol) Center = Roff/2  

Logarithmic or Log-Cubic function Center = sqrt(Ron * Roff) 

 

Table 1 – Switch Impedances vs. Simulator Effects 

 

 

tanhc(x,1) tanhc(x,-1)

tanhc(x,0.5) tanhc(x,-0.5)
analog function real tanhc; 
  input x,c; real x,c; 
  tanhc = tanh( c==0? x : c>0?  
 x*(1+c/3*x*x) :  
 x*pow(1-c*x*x,-0.3333) ); 
endfunction 
 
analog function real ftanhc; 
  input x,gain,ios,lo,hi,c; real x,gain,ios,lo,hi,c,dv;
  begin                             
     dv=(hi-lo)/2;                              
     ftanhc = lo+dv*(1+tanhc(gain/dv*(x-ios),c)); 
  end 
endfunction 
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4.2 Modeling Common Analog Effects 

Modeling amplifiers are likely to be one of the most basic, but challenging models to add extra effects to. The amplifier 
output can be as simple as a gain stage multiplying the input. Included can be input offsets, slew rate, small-signal 
frequency response, input and output impedances, and signal clipping. Output impedances can be fine-tuned to track 
closely real circuit effects. In addition, effects from power supply, temperature, and process can be added. Taking into 
consideration accurate DC transfer effects, curve fitting the output from a clipped to hyperbolic tangent response may be of 
interest, as explained in section 4.1 of this document. 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 3 – Amplifier DC Transfer Choices 

 

 

 

 

 

analog function real fcube; 
  input x,L,H;  real x,L,H,arg; 
  begin 
    arg = x/(H-L) / 1.5 + 0.5; 
    fcube = (arg<0)? L : (arg>1)? H : L+( H-L)*( 3-2*arg)*arg*arg;
  end 
endfunction 

INPUT 

TRANSFER

OUTPUT Output

VREF

power supply

In+

In-
Gain

Clipped

Hyperbolic
Tangent 

Cubic 

All three functions 
output center for 

input zero 

`define clip(x,L,H)   min(H,max(L,x+(H+L)/2))

analog function real ftanh;
  input x,L,H;  real x,L,H,dv; 
  begin 
    dv=(H-L) / 2; 
    ftanh = L+ dv*(1+ tanh(x/dv));
  end 
endfunction

Ideal 
Digital 

Ideal 
Analog 

A = `clip(40*Vin,-9,9);
B = fcube(40*Vin,-9,9);
C = ftanh(40*Vin,-9,9);
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Figure xx – Modeling Hystersis 

 

 

 

 

Figure 4 – Including Hysteresis 

 

 

 

When passing the signal to the output of a model, it is almost always necessary to use a transition statement, which in some 
cases makes it easier for the simulator to converge on a solution. The transition statement can work from a discrete digital 
input and waveshape. The delay, rise, and fall times can be added, which will define the digital signal at the output in an 
analog simulation. 

 

 

 

 

 

 

 

 

 

 

 

 

Figure 5 – Using Transition Limiting 

 

 

Transient output waveshaping can be done with RC and the Laplace transfer. 

 

 

Td 

Vin Vout 

Tr Td Tf

Vout = $transition(Vin,Td,Tr,Tf);

Vio-Hys Vio+Hys

Downward
path 

Upward
path 

module Vhys(in,out); 
  input in; output out; electrical in,out; 
  parameter real K=40, Vos=0, Vhys=0.1; 
  parameter real Vol=-9, Voh=9; 
  real Vo,Offset; 
  `include “simple.fun” 
  analog begin 
    @(initial_step) Offset = Vio+Vhys; 
    Vo = fcube( K*(Vin-Offset), Vol, Voh) 
    if (Vo==Vol) Offset = Vio+abs(Vhys); 
    if (Vo==Voh) Offset = Vio-abs(Vhys); 
    V(out) <+ Vo; 
  end 
endmodule 
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RC direct behavioral implementation: 
I(N) <+ V(N)/Ro -V1/Ro +Co*ddt(V(N)); 
 
Equivalent Laplace voltage transfer relationship: 

V(N) <+ laplace_zp( V1, {}, {-1/(Ro*Co),0} ); 
 

Figure 6 – Using RC and the Laplace Transfer 

 

 

 

The output can be conditioned with slew rate limiting. 

 

 

 

 

 

 

 

 

 

 

  

 

Figure 7 – Using Slew Rate Limiting 

 

 

 

 

The output can be expressed as resistance or conductance, and DC and impedance characteristics can be defined.  

 

V1/Ro 

N I(N) 

V(N)

Ro Co 

1 2 3 

Vout = $slew(Vin, SRpos, SRneg);

RoCo 

V1 V(N) 

SRpos 

Vin Vout 

SRneg

3 2 1 



    

  PLATFORM APPLICATION NOTE 13

 

 

 

 

 

 

Figure 8 – Modeling Output Impedances 

 

 

Separate active and saturated resistance can aid in shaping the output. By using a ftanh() function as described can limit the 
input current. An `fclip function can, as defined, produce well-defined diode-like voltage limiting, with zero voltage at isat. A 
capacitor can be added for simple pole low-pass response. Limiting the current driving the capacitor can act as slew rate 
limiting. The DC active region output resistance is Ro+Rac, and saturated and AC output resistance is Rac. 

 

 

Figure 9 – Using Separate Active and Saturated Resistance 

 

 

 

 

 

Rac 

RoVoc/Ro

V(out)

I(out)

Co 

N

If (Ro>1)  I(out) <+ (V(out)-Voc)/Ro; 
else         V(out) <+ Voc + I(out)*Ro; 

I(N) <+ (V(N) - Voc)/Ro + Co*ddt(V(N)); 
I(out,N) <+ V(out,N)/Rac; 

 

R

out

C

Rac
N 

cur res cap lim 

I(lim)  <+ `fclip(V(lim)-Voh,Isat,0.1) - `fclip(Vo)V(lim),Isat,0.1);

I(cur) <+ ftanh(-Vnom/Ro,Isat,-Isat); 

`define fclip(V,isat,dV)  isat*exp(4.6*(V)/dV)

isat 

0 -dV 
V

fclip 

isat/100

V(out) 

I(out) 

Voc 

Ro 

RoVoc/Ro 

V(out)

I(out)
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Figure 10 – Simple Amplifier Verilog-A Model 

 

 

Resistor-dividers can be used to model the output impedance. 

 

module simpleAmp(inp,inm,out);
input inp,inm; 
output out; 

electrical inp,inm,out,N,gnd; 
branch (N,gnd) cur, res, cap, lim; 
 
parameter real Gain=1k; // gain of amplifier 
parameter real Vio=0; // input offset 
parameter real  Voh=5; // output high voltage 
parameter real  Vol=0;  // output low voltage 
parameter real  GBW=10M; // gain bandwidth 
parameter real  SR=20M; // slew rate 
parameter real  Rdc=300; // output resistance DC 
parameter Rac=100; // output resistance AC 
 
real Ro, Co, Isat, Vnom;  // establish internal variables used in expressions 
 
`define fclip(V,isat,dV)  isat*exp(4.6*(V)/dV) // define a parameterized expression 
 

analog function real ftanh; // define a tanh function for output smoothing 
input x,L,H;  real x,L,H,dv; 
begin 
dv=(H-L) / 2; 
ftanh = L+ dv*(1+ tanh(x/dv)); 
end 
endfunction 
 
analog begin 
@(initial_step) begin   // to establish initial fixed constants 
Ro = Rdc-Rac; 
Co = 1/(`M_TWO_PI*Ro*GBW/Gain); 
Isat = Co*SR; 
end 
 
Vnom = Gain*(V(inp,inm)-Vio); // output voltage gain expression 
V(gnd) <+ 0;  // establish ground reference, actually not need with Verilog-A coding 
I(cur) <+ ftanh(-Vnom/Ro,Isat,-Isat); // pass current using tanh smoothing function 
I(res) <+ (V(res)-(Voh+Vol)/2)/Ro; // pass output current 
I(cap) <+ ddt(Co*V(cap)); // pass current effects from output capacitance 
I(lim)  <+ `fclip(V(lim)-Voh,Isat,0.1)  - `fclip(Vol-V(lim),Isat,0.1); // limit output swing 
I(out,N) <+ V(out,N)/Rac; // add current from output impedance 
 
end 
 

endmodule 
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Figure 11 – Using Resistor Dividers to Model Output Impedance 

 

 

There are other effects that can also be modeled, such as additional enable control pins, input impedance and range 
limitations, power supply current, parametric supply variations, response to common mode or supply interference, power-on 
or off conditions, and warning messages to indicate invalid operating regions. There are many choices as far as specialized 
effects to model. But, with complexity, there are tradeoffs. For example, output impedances modeled in a nonlinear fashion 
may decrease simulation efficiency. This may also involve more time to develop, extract parameters, and simulate. One 
must decide what level of modeling is needed and what is not important. If necessary, you can create both simple and 
complex models.  

 

4.4 Modelwriter 

Modelwriter is a model utility that is menu driven and allows ready use of a generic model that can be parameterized, placed 
in the schematic, and used. There are 11 Cadence library categories: 

•  Analog Models 

•  Components 

•  Continuous Time 

•  Discrete Time 

•  Instruments 

•  Interface 

•  OpAmp Models 

•  PLL Components 

•  Sources 

•  System Level 

•  Telecom  

 

// Given relative output level of Kout = 0 to 1.
// Gx term allows additional current at midpoint.
Gx = Kout*(1-Kout)*Ipk/VpsNOM+1n; 
I(VCC,Y) <+ V(VCC,Y)*(Kout/Roh+Gx); 
I(Y,VEE) <+ V(Y,VEE)*(1-Kout)/Rol+Gx); 

Vcc 

Vee 

RH=Roh 

RL=big 

Vo = Vcc

Vcc 

Vee 

RH=big 

RL=Rol 

Vo = Vee

Resistors for
High Output 

Resistors for
Low Output 

Vcc 

Vee 

RH 

RL 

Vo = Vee+(Vcc-Vee) RL
RH+RL

General 
Resistor  
Topology 
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Figure 12 – Modelwriter™ User Menus and Automatically Created Verilog-A Model 

 

5 VERILOG-D LANGUAGE OVERVIEW 
Verilog-D is an event-driven language that supports behavioral as well as structural modeling. It is interrupted and runs with 
the simulator or Incisive-AMS. The digital simulator evaluates all events in the current time. Some events can be schedule 
additional events at the current or a future time. The simulator timesteps continue until all events are complete. The 
language contains only the concept of going forward, and multiple events can occur at the same timepoint.  
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Figure 13 – Modeling a Data Flip-Flop with Verilog-D 

 

 

5.4 Common Language Constructs and Statements 

Verilog-D carries common language constructs, primary module statements, and event-driven constructs. Table 3, below, 
lists a sample of the most common.  

 

Verilog-D Constructs Definitions 

`timescale 1ns / 10ps Defines time units (1nS0 and minimum digital timestep (10pS) 

parameter n=2, y=2.0; Defines an integer (2) and a real parameter (2.0) denoted by decimal place 

reg A, B; A reg is a 1-bit digital variable 

C=1�bx; D=4�b1001; Binary value specification format 

reg[0:15] X[0:1023]; Declare a 1K by 16bit memory 

Primary Statements  

Initial begin … end Executed only once at the beginning of the simulation, multiples run concurrently 

Always begin …end Executed repeatedly throughout the simulation, multiples run concurrently 

Assign P = <expression> Assigns a definition to an output pin with known registers, can�t be assigned to other 

Event-Driven Constructs  

#2.1 Time delay before continuing (in `timescale units) 

@(event) Occurs only on the event 

@(posedge a or negedge b) Wait until the specified edge of either signal 

@(a or b) Wait until either single changes 

wait(a & b) Wait until the expression becomes true 

Table 3 – Example of Common Verilog-D Constructs 

 

 

Symbol 
 Data Q 

Qb Clock 
Reset 

DFF1 
Actual Verilog-D Code
module DFF1 (Q,Qb,Data,Clock,Reset); 
   output Q,Qb; input Data,Clock,Reset; // signals assume single-bit 
   parameter Qinit = 0;                               // digital default 
   reg Q;                                       // a `reg’ is a 1-bit variable 
   initial Q=Qinit;                        // initial section evaluates just once 
 
   always @(posedge(Clock))  // Always is a loop that runs constantly: 
       if (!Reset)  Q=Data;           // wait for positive clock edge, then 
      // if the Reset signal isn’t high, set  
     // register Q to equal the Data input. 
   always @(posedge(Reset)) Q=1’b0; // wait for positive edge of Reset,  
    // then set Q to equal zero (1-bit bin) 
   assign Qb = ~Q;  // define Qb to be a logical inversion of  
endmodule  // Q . Qb updates whenever Q changes. 

Description 
Initially, set Q to Q initial. 
At each Clock  positive edge,  
if Reset is not high, 
 then set Q to Data. 
At each Reset positive edge, 
set Q low. 
Qb is always the  inverse of Q. 
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5.5 Verilog-D Examples 

 

 

 

 

 

 

 

 

 

 

 

Figure 14 – Example of Basic Verilog-D Module 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 

 Figure 15 – Example of Basic Verilog-D Counter Expressions 

 

 

 

 

 

 

 

 

 

 

module counter4 
   (result, clock, asynch_reset); 
   input asynch_reset, clock;  
   output [3:0] result;     // Output is a 4-bit bus (MSB:LSB) 
   reg [3:0] result; 
 

   initial result = 1'b0; 
    

   always @ (posedge clock or    // Execute code whenever either leading  
       posedge asynch_reset) begin   // edge is detected. 
         if (asynch_reset)          result = 1'b0;  
       else if (result == 4'd15)  result = 1'b0;  
       else          result = result + 1'b1; // Arithmetic operation on bus value
 

a

b

se

c
0             5           10           15           20 

Test_Input Outputs 
`timescale 1ns / 10ps; 
module Test_Input (a,b,sel,ck);
output a,b,sel,ck; 
reg a,b,sel,ck; 
initial begin 
   a=0; b=1; sel=0; ck=0; 
   #5 b=0; 
   #5 b=1; sel=1; 
   #5 a=1; 
   #5 $finish; 
end 
always #3 ck=~ck; 
endmodule 
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 Figure 16 – Example of Verilog-D 4-Bit Counter 

 

 

`timescale 1ns / 100ps
 
module Count4bit_d(up,dn,ck,res,q0,q1,q2,q3,ov); 
 input up,dn,ck,res; 
 output q0,q1,q2,q3,ov; 
 parameter Edge=1; // clock edge to trigger on 
 parameter Kinit=0; // initial/reset output level 
 parameter Td=1.0e-9; // input-to-output delay time 
 reg [3:0] q;  // 4-bit output 
 reg Kov,ckHi;  // overflow bit, ck after edge 
 initial begin 
   ckHi = (Edge==1)? 1:0; // clock state after edge 
   q = Kinit;  Kov = !ckHi; // initialize clock & overflow 
 end 
 assign q0 = q&1;  // assign outputs to pins 
 assign q1 = (q>>1)&1; 
 assign q2 = (q>>2)&1; 
 assign q3 = q>>3; 
 assign ov = Kov; 
 always @(ck) begin                // on any clock edge, 
    if (ck==ckHi && !res) begin    // if correct edge & not reset: 
       if (q==15 && up && !dn) begin   // check for overflow 
           #(Td/1.e-9) q=0; Kov=ckHi; 
       end 
       else if (q==0 && !up && dn) begin // check for underflow 
           #(Td/1.e-9) q=15; Kov=ckHi; 
       end 
       else begin    // normal increment or 
decrement 
           #(Td/1.e-9) q=q+up-dn; Kov=!ckHi; 
       end 
    end 
    else Kov=!ckHi;   // clear overflow on other 
edge 
  end 
  always @(posedge res) begin   // asynch reset 
     #(Td/1.e-9) q = Kinit; 
     Kov = !ckHi; 
  end 
endmodule 

Count4bit 
Outputs 

Verilog-D 
4-bit counter 

Example 
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6 VERILOG-AMS LANGUAGE OVERVIEW 
The Verilog-AMS language is a combination of both Verilog-D and Verilog-A statements that run in Incisive-AMS. There are 
two types of domains in Verilog-AMS: Discrete and Continuous. Discrete is for digital circuits, and continuous is reserved for 
analog circuits. The two domains are partitioned and co-simulated with their respective solver. Interface Elements (IEs) are 
automatically placed between analog and digital blocks when simulated. All analog and mixed-signal modules require that 
ports and nodes associated with respective behavioral code have disciplines declared for them. See example below. 

In general, digital behavior is defined in 
the initial or always blocks, and analog 
in a single analog block. There can be 
only one analog block, but many digital 
blocks. Continuous time signals can 
only be written from within the analog 
block, and discrete time signals are 
written outside the analog block. 
Analog variables can appear in digital 
expressions and digital variables can 
be used in analog expressions. 

Mixed-signal models are not just 
Verilog-D and Verilog-A. They are 
combined into one model. This can 
result in design free interface elements 
(IEs) which are more closely controlled 
within the model. Mixed-signal blocks 
can be all behavioral, all structural, or 
any combination. The full capabilities 
of both Verilog-D and Verilog-A can be 
realized using Incisive-AMS. The 
digital and analog sections interact by 
sharing data and controlling each 
other�s events. This allows for event 
driven analog blocks. Verilog-D can 
extend to support real value nets, 
which are called wreal. 

module verilog-ams_example (a,b,c,d); // module name / pins 
   input a,b,c; // port declarations 
   output d; 
   electrical a,b,d,e; // analog discipline 
   logic c; // digital wire type 
   parameter load = 100 from (0:1k); // analog parameter 
   real x; //variable declarations 
   ground b; // digital global ground node 
 
   resistor #(.r(load)) rout(e,d); // structural description 
 
   initial begin // initialize variable to something other than �0� 
      x=1; 
   end 
 
   always @(posedge(c)) begin // digital behavior block 
      x=(x<12 ? x+1 : 1); // digital event 
   end 
 
   analog begin // analog behavior block 
      @(cross(V(a) -2.5, 1))  // analog event 
          V(e) <+ (V(a) - V(b)) * x;  // mixed signal interaction 
   end 
endmodule // end of model declaration  
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Figure 17 – Using Wreal to Create an Analog Effect in the Digital Domain 

 

 

 

Figure 18 – Using Wreal to Do a Frequency-to-Voltage Conversion 

 

With Incisive-AMS there is a closer connection between the analog and digital solver. In the past, the interprocess 
communication (IPC) with Verimix� was slower and limited.  

 

 

 On leading edge of digital signal ... 

Or on trailing edge ... 

Out pin is real value following Freq value.

module F2V_ams (In,Out); 
 input In; logic In; output Out; wreal Out;
 parameter real Vnom=1, Fnom=1M; 
 real Tup,Tdn, Freq; 
  

 initial begin 
    Tup=0; Tdn=0; Freq=Fnom; 
 end 
 always @(posedge In) begin 
   if (Tup>0)  Freq = 1/($abstime-Tup); 
   Tup=$abstime; 
 end 
 always @(negedge In) begin 
   if (Tdn>0)  Freq = 1/($abstime-Tdn); 
   Tdn=$abstime; 
 end 
 assign  Out = Freq*Vnom/Fnom; 
endmodule 

Freq (digital) 
All-digital model 
Wreal output 
No effect on analog 
portion of the simulation 

VIN 
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7 AVAILABLE CADENCE ONLINE DOCUMENTATION 
•  Cadence Verilog-AMS Language Reference  Analog and Mixed-Signal constructs 

•  Cadence Verilog-A Language Reference    Verilog-A language for Spectre 

•  Cadence AMS Simulator User Guide   Operation of AMS Simulator 

•  Cadence AMS Environment User Guide   Using AMS from DFII 

•  Verilog-XL Reference     Verilog-D language 

•  Cadence NC-Verilog Simulator Help   NC-Verilog language limitation and enhancements 

•  Cadence NC-Verilog Simulator Tutorial   Tutorial on NC environment 
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