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Two-Stage Opamp 
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Two-Stage Opamp 
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Design Equations 
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Two-Stage Opamp –Zero-Nulling R 
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Two-Stage Opamp –Voltage Buffer 

Compensation 
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Two-Stage Opamp –Common Gate 

Compensation 
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Class-A Stage: Slewing 
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Class-AB Stage: Floating Current Mirror 
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Two-Stage Opamp –Telescopic with Class-

AB Stage 
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Folded Cascode OTA 
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Two-Stage Opamp –Folded-Cascode with 

Class-AB Stage 
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Two-Stage Opamp –Folded-Cascode + 

Class-AB Stage, Full-rail input CMR 
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Two-Stage Opamp –Gain Enhancement 
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Two-Stage Opamp –AC Response 

Caveat: 

• Don’t  use this method. 

• Use STB analysis with iprobe 

instead. 
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Two-Stage Opamp –Step Response 
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Spectre STB Analysis 

• The STB analysis linearizes the circuit about the DC operating point and 

computes the loop-gain, gain and phase margins (if the sweep variable is 

frequency), for a feedback loop or a gain device [1]. 

• Refer to the Spectre Simulation Refrence [1] and [2] for details. 

 



Vishal Saxena <vishalsaxena@boisestate.edu> 

Example Single-ended Opamp Schematic  
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STB Analysis Test Bench 

• Pay attention to the iprobe component (from analogLib) 

• Acts as a short for DC, but breaks the loop in stb analysis 

• Place the probe at a point where it completely breaks (all) the 

loop(s). 
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DC Annotation  

• Annotating the node voltages and DC operating points of the 

devices helps debug the design 

• Check device gds to see if its in triode or saturation regions 
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Simulation Setup 

• Always have dc analysis on for debugging purpose  
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Bode Plot Setup 

• Results->Direct Plot-> Main Form 
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Open Loop Response Bode Plots 

• Here, fun=152.5 MHz, PM=41.8º 

• Try to use the stb analysis while the circuit is in the 

desired feedback configuration 

• Break the loop with realistic DC operation points 
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Transient Step Response Test Bench 

• Transient step-response verifies the closed-loop stability 

• Use small as wells as large steps for characterization 

• iprobe acts as a short (can remove it) 
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Small Step Response  

• Observe the ringing (PM was 41º) 

• Compensate more 



Vishal Saxena <vishalsaxena@boisestate.edu> 

Large Step Response  

• Note the slewing in the output 
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Miller Compensation 
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• Compensation capacitor (Cc) between 

the output of the gain stages causes 

pole-splitting and achieves dominant 

pole compensation. 

• An RHP zero exists at  

• Due to feed-forward component of 

the compensation current (iC). 

• The second pole is located at  

• The unity-gain frequency is  

• A benign undershoot in step-

response due to the RHP zero 

 

All the op-amps presented have been designed in AMI C5N 0.5μm CMOS process with scale=0.3 μm and Lmin=2. 

The op-amps drive a 30pF off-chip load offered by the test-setup. 
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Drawbacks of Direct (Miller) Compensation 

• The RHP zero decreases phase 

margin 

•  Requires large CC for 

compensation (10pF here for a 

30pF load!). 

• Slow-speed for a given load, CL. 

• Poor PSRR 

• Supply noise feeds to the 

output through CC. 

• Large layout size. 
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Indirect (or Ahuja) Compensation 

• The RHP zero can be eliminated by 
blocking the feed-forward 
compensation current component 
by using 

• A common gate stage, 

• A voltage buffer, 

• Common gate “embedded” in the 
cascode diff-amp, or 

• A current mirror buffer. 

• Now, the compensation current is 
fed-back from the output to node-1 
indirectly through a low-Z node-A. 

• Since node-1 is not loaded by CC, 
this results in higher unity-gain 
frequency (fun). 

 

 

An indirect-compensated op-amp 

using a common-gate stage. 
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Indirect Compensation in a Cascoded Op-

amp 
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Indirect-compensation using 

cascoded current mirror load. 
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Indirect-compensation using 

cascoded diff-pair. 

 Employing the common gate device “embedded” in the cascode structure for 

indirect compensation avoids a separate buffer stage. 

 Lower power consumption.  

 Also voltage buffer reduces the swing which is avoided here. 
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Analytical Modeling of Indirect Compensation 

  A1 A2

Cc

1 2

vin vout

Differential

Amplifier
Gain Stage

Rc

A

ic

Block Diagram 

Small signal analytical model 

RC is the resistance 

attached to node-A. 
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The compensation 

current (iC) is indirectly 

fed-back to node-1.  
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Analytical Results for Indirect Compensation 
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Pole-zero plot 

 Pole p2 is much farther away from fun. 

 Can use smaller gm2=>less power! 

 LHP zero improves phase margin. 

 Much faster op-amp with lower power 

and smaller CC. 

 Better slew rate as CC is smaller. 

LHP zero 
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Indirect Compensation Using Split-Length Devices 

• As VDD scales down, cascoding is becoming tough. Then how 
to realize indirect compensation as we have no low-Z node 
available? 

• Solution: Employ split-length devices to create a low-Z node. 

• Creates a pseudo-cascode stack but its really a single device. 

• In the NMOS case, the lower device is always in triode hence 
node-A is a low-Z node. Similarly for the PMOS, node-A is low-Z. 
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Split-Length Current Mirror Load (SLCL) Op-amp 
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 The current mirror load devices are 

split-length to create low-Z node-A. 

 Here, fun=20MHz, PM=75° and 

ts=60ns. 
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SLCL Op-amp Analysis 
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 Here fz1=3.77fun 

 LHP zero appears at a higher 

frequency than fun. 
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Split-Length Diff-Pair (SLDP) Op-amp 

 The diff-pair devices are split-length to 

create low-Z node-A. 

 Here, fun=35MHz, PM=62°, ts=75ns. 

 Better PSRR due to isolation of node-A 

from the supply rails. 

 

Frequency Response 

Small step-input settling in follower 

configuration 
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SLDP Op-amp Analysis 
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 Here fz1=0.94fun,  

 LHP zero appears slightly before fun and 

flattens the magnitude response. 

 This may degrade the phase margin. 

 Not as good as SLCL, but is of 

great utility in multi-stage op-amp 

design due to higher PSRR. 
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Test Chip 1: Two-stage Op-amps 

Miller 3-Stage Indirect

SLCL 

Indirect

SLDP 

Indirect

Miller with Rz

 AMI C5N 0.5μm CMOS, 1.5mmX1.5mm die size. 
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●Test Results and Performance Comparison 
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Performance comparison of the op-amps for CL=30pF. 

 10X gain bandwidth (fun). 

 4X faster settling time. 

 55% smaller layout area. 

 40% less power consumption. 
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Effect of LHP-zero on Settling 

 In certain cases with indirect 

compensation, the LHP-zero (ωz,LHP) 

shows up near fun. 

 Causes gain flattening and degrades PM 

 Hard to push out due to topology restrictions 

 Ringing in closed-loop step response 

 This ringing is uncharacteristic of the 2nd order 

system. 

 Used to be a benign undershoot with the RHP 

zero, here it can be pesky 

 Is this settling behavior acceptable? 

 Watch out for the ωz,LHP  for clean settling 

behavior! 

Frequency Response 

Small step-input settling in follower 

configuration 
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Caveat: 

• When using indirect 

compensation be aware of the 

LHP-zero induced transient 

settling issues 
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