Homework 1

ECE 5411 - CMOS Analog IC Design (Spring 2014)

Due on Tuesday, Jan 28, 2014.

Note:

- 1. Use Cadence schematic capture, layout and Spectre simulation tools, available on the AMS servers for the homework problems.
- 2. Unless otherwise stated, use the following MOSFET parameters for hand calculations. Use the $1\,\mu m$ CMOS models on the servers for corresponding simulations.

Table 1: Long-channel MOSFET parameters.

Parameter	NMOS	PMOS
Scale factor (L_{min})	$1\mu m$	
V_{DD}	5 V	
V_{THN} and V_{THP}	0.8	0.9
KP_n and KP_p	$120 \frac{\mu A}{V^2}$	$40 \frac{\mu A}{V^2}$
$C'_{ox} = \frac{\epsilon_{ox}}{t_{ox}}$	$1.75 \frac{fF}{\mu m^2}$	

sient as well as (iii) AC analyses to verify voltages, currents and gain of the amplifier. Use a voltage-controlled voltage source with a large open-loop gain (A_V) for modeling the opamp.

Problem 2: Using the TSMC 180nm Spectre models:

- a) Generate all the I-V curves (i.e. I_D vs V_{GS} , V_{DS} and V_{SB}) for a 10/1 NMOS and a 10/1 PMOS. Remember that for this process: $L_{min} = 0.18 \mu m$ and $V_{DD} = 1.8 V$.
- b) Do you expect long-channel or short-channel behavior from these devices? Generate Table 1 for this process.

Problem 1- ECE 310 Review: An ideal opamp is used to design an AC amplifier in the circuit shown in Figure 1.

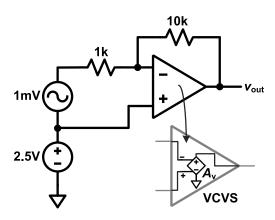


Figure 1

- a) Calculate the DC and AC voltages in the circuit nodes. What is the AC gain of the amplifier?
- b) What are the DC and AC currents (magnitude and direction) flowing across the resistors?
- c) Verify your answers using simulations (i) DC analysis to annotate operating points, (ii) tran-