Homework 4

ECE 5411 - CMOS Analog IC Design (Spring 2011)

Due on Monday, Feb 14, 2011.

Note: Use Cadence schematic capture, layout and Spectre simulation tools, available on the AMS servers for the homework problems.

- Problems 1-4: Do problems A20.1, A20.2, A20.5, A20.6 from the extra problem set available on the textbook website.
- **Problem 5:** Using the TSMC 180n CMOS models $(V_{DD} = 1.8V, L_{min} = 0.18\mu)$:
 - a) Regenerate the Table 9.2 in the textbook for an overdrive $(V_{OV} = V_{GS} V_{THN})$ equal to 5% of V_{DD} . Use $L = 2 \cdot L_{min}$ and state your assumptions. Show all the relevant simulation plots. Save all your neatly done simulation test-benches for future use.
 - b) For the NMOS and PMOS devices in your table, plot f_T , $g_m r_o$ and $g_m r_o f_T$ as a function of overdrive. Use Spectre sweeps and/or ocean scripts to generate the plots. Interpret each of these graphs
 - c) For the NMOS and PMOS above, plot $\frac{g_m}{I_D}$ as a function of overdrive. Explain these plots. Let's define a composite figure of merit (FoM_1) as $FoM_1 = f_T \cdot \frac{g_m}{I_D}$. Find the overdrive voltage which maximizes this figure of merit. You may read reference P.5 for the significance of these metrics.
 - (You may want to refer to the Cadence OCEAN scripting information on the course reference page (reference D.3)).