
Saxena

High Speed Op-amp Design: Compensation and 
Topologies for Two-Stage Designs 

Vishal Saxena
Department of Electrical and Computer Engineering

Boise State University
1910 University Dr., MEC 108

Boise, ID 83725
jbaker@boisestate.edu and vishalsaxena@ieee.org



Saxena

Outline

Introduction
Two-stage Op-amp Compensation
Conclusion



Saxena

INTRODUCTION
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Op-amps and CMOS Scaling

 The Operational Amplifier (op-amp) is a fundamental building 
block in Mixed Signal design.
 Employed profusely in data converters, filters, sensors, drivers etc.

 Continued scaling in CMOS technology has been challenging 
the established paradigms for op-amp design.

With downscaling in channel length (L) 
 Transition frequency increases (more speed).
 Open-loop gain reduces (lower gains).
 Supply voltage is scaled down (lower headroom) [1].
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CMOS Scaling Trends

 VDD is scaling down but VTHN is almost constant.
 Design headroom is shrinking faster.

 Transistor open-loop gain is dropping (~10’s in nano-CMOS)
 Results in lower op-amp open-loop gain. But we need gain!

 Random offsets due to device mismatches.
[3], [4].
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Analog Design Getting Squeezed With Scaling

[5]
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Integration of Analog into Nano-CMOS?

 Design low-VDD op-amps.
 Replace vertical stacking (cascoding) by horizontal cascading of gain 

stages (see the next slide).

 Explore more effective op-amp compensation techniques.
 Offset tolerant designs.
 Also minimize power and layout area to keep up with the 

digital trend.
 Better power supply noise rejection (PSRR).



Saxena

Cascoding vs Cascading in Op-amps
A Telescopic Two-stage Op-amp

A Cascade of low-VDD 
Amplifier Blocks.

(Compensation not shown here)
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VDDmin>4Vovn+Vovp+VTHP with 
wide-swing biasing. [1]

VDDmin=2Vovn+Vovp+VTHP.

 Even if we employ wide-swing biasing for low-voltage designs, three- or 
higher stage op-amps will be indispensable in realizing large open-loop DC 
gain.
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TWO-STAGE OP-AMP COMPENSATION
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Direct (or Miller) Compensation
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 Compensation capacitor (Cc) 
between the output of the gain stages 
causes pole-splitting and achieves 
dominant pole compensation.

 An RHP zero exists at 
 Due to feed-forward component of 

the compensation current (iC).
 The second pole is located at 
 The unity-gain frequency is 
 A benign undershoot in step-

response due to the RHP zero

All the op-amps presented have been designed in AMI C5N 0.5μm CMOS process with scale=0.3 μm and Lmin=2. 
The op-amps drive a 30pF off-chip load offered by the test-setup.
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Drawbacks of Direct (Miller) Compensation

 The RHP zero decreases phase 
margin
 Requires large CC for 

compensation (10pF here for a 
30pF load!).

 Slow-speed for a given load, CL.

 Poor PSRR
 Supply noise feeds to the output 

through CC.
 Large layout size.
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Indirect Compensation

 The RHP zero can be eliminated by 
blocking the feed-forward compensation 
current component by using
 A common gate stage,
 A voltage buffer,
 Common gate “embedded” in the 

cascode diff-amp, or
 A current mirror buffer.

 Now, the compensation current is fed-
back from the output to node-1 indirectly 
through a low-Z node-A.

 Since node-1 is not loaded by CC, this 
results in higher unity-gain frequency 
(fun).

An indirect-compensated op-amp 
using a common-gate stage.
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Indirect Compensation in a Cascoded Op-amp
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Indirect-compensation using 
cascoded current mirror load.

vm vp
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CL

Indirect-compensation using 
cascoded diff-pair.

 Employing the common gate device “embedded” in the cascode structure 
for indirect compensation avoids a separate buffer stage.
 Lower power consumption. 
 Also voltage buffer reduces the swing which is avoided here.
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Analytical Modeling of Indirect Compensation

Block Diagram

Small signal analytical model

RC is the resistance 
attached to node-A.

ic
vout

sCc Rc


1

The compensation 
current (iC) is indirectly 
fed-back to node-1. 
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Derivation of the Small-Signal Model

The small-signal model 
for a common gate 
indirect compensated op-
amp topology is 
approximated to the 
simplified model seen in 
the last slide.

Resistance roc is 
assumed to be large.

gmc>>roc
-1, RA

-1, 
CC>>CA
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Analytical Results for Indirect Compensation
j


z1

 un

p1p2p3

Pole-zero plot

 Pole p2 is much farther away from fun.
 Can use smaller gm2=>less power!

 LHP zero improves phase margin.
 Much faster op-amp with lower 

power and smaller CC.
 Better slew rate as CC is smaller.

LHP zero
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Indirect Compensation Using Split-Length Devices

 As VDD scales down, cascoding is becoming tough. Then how to realize 
indirect compensation as we have no low-Z node available?

 Solution: Employ split-length devices to create a low-Z node.
 Creates a pseudo-cascode stack but its really a single device.

 In the NMOS case, the lower device is always in triode hence node-A is a 
low-Z node. Similarly for the PMOS, node-A is low-Z.

NMOS PMOS
Split-length 44/4(=22/2) 

PMOS layout
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Split-Length Current Mirror Load (SLCL) Op-amp
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 Here, fun=20MHz, PM=75° and 
ts=60ns.
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Frequency Response

Small step-input settling in follower 
configuration
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SLCL Op-amp Analysis
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 Here fz1=3.77fun

 LHP zero appears at a higher 
frequency than fun.
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Split-Length Diff-Pair (SLDP) Op-amp

 The diff-pair devices are split-length to 
create low-Z node-A.

 Here, fun=35MHz, PM=62°, ts=75ns.
 Better PSRR due to isolation of node-A 

from the supply rails.

Frequency Response

Small step-input settling in follower 
configuration
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SLDP Op-amp Analysis
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Test Chip 1: Two-stage Op-amps

Miller 3-Stage Indirect

SLCL 
Indirect

SLDP 
Indirect

Miller with Rz

 AMI C5N 0.5μm CMOS, 1.5mmX1.5mm die size.
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Test Results and Performance Comparison

Miller with Rz (ts=250ns)

SLCL Indirect (ts=60ns)

SLDP Indirect (ts=75ns)

Performance comparison of the op-amps for CL=30pF.

 10X gain bandwidth (fun).
 4X faster settling time.
 55% smaller layout area.
 40% less power consumption.
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Effect of LHP-zero on Settling
 In certain cases with indirect 

compensation, the LHP-zero (ωz,LHP) 
shows up near fun.
 Causes gain flattening and degrades PM
 Hard to push out due to topology 

restrictions
 Ringing in closed-loop step response

 This ringing is uncharacteristic of the 2nd

order system.
 Used to be a benign undershoot with the 

RHP zero, here it can be pesky
 Is this settling behavior acceptable?

 Watch out for the ωz,LHP for clean settling 
behavior!

Frequency Response

Small step-input settling in follower 
configuration
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