High Speed Op-amp Design: Compensation and
Topologies for Two-Stage Designs

Vishal Saxena
Department of Electrical and Computer Engineering
Boise State University
1910 University Dr., MEC 108
Boise, ID 83725
jbaker@boisestate.edu and vishalsaxena@ieee.org

Saxena



"

Outline

JIntroduction

dTwo-stage Op-amp Compensation
1 Conclusion

Saxena



Saxena

INTRODUCTION

BOISESTATE

IIIIIIIIII



Op-amps and CMOS Scaling

 The Operational Amplifier (op-amp) is a fundamental building
block in Mixed Signal design.

Employed profusely in data converters, filters, sensors, drivers etc.

1 Continued scaling in CMOS technology has been challenging
the established paradigms for op-amp design.

1 With downscaling in channel length (L) v
.. : foc —=

Transition frequency increases (more speed). T L
Open-loop gain reduces (lower gains). g VL

Supply voltage 1s scaled down (lower headroom) [1]. ov
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CMOS Scaling Trends
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d VDD is scaling down but V 4y 1s almost constant.

Design headroom is shrinking faster.

] Transistor open-loop gain is dropping (~10’s in nano-CMOS)

Results in lower op-amp open-loop gain. But we need gain!

1 Random offsets due to device mismatches. N
AVTH - W
[3], [4].
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* Process variation makes design
centering tough

 Does further scaling help?

[5]



Integration of Analog into Nano-CMOS?

 Design low-VDD op-amps.

Replace vertical stacking (cascoding) by horizontal cascading of gain
stages (see the next slide).

1 Explore more effective op-amp compensation techniques.
[ Offset tolerant designs.

1 Also minimize power and layout area to keep up with the
digital trend.

[ Better power supply noise rejection (PSRR).
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Cascoding vs Cascading in Op-amps

A Telescopic Two-stage Op-amp
A Cascade of low-VDD

VDD

EFV—#E; s T Amplifier Blocks.
MTJ} - #EMQT (Compensation not shown here)
\Assl_ Vyias? — M M9B Ce 22

T b q MsB _O—' O # #F;op\moofz

— .

\mL iM?T Vpeas MFCP d[;h VDD VDD VDD VDD VDD VDD

) ‘ . ! | - Vncm Eﬂ @ Vout 97

B | | MFCN T

10/ 10] }» - 240 fF ¢ e @ : ¢ ‘

‘;{’m E MIB MM MEB::| }J‘.ﬂ I MON, 500/2 ) 1
4 :

N
Vias3 [150.-'2,M6T ‘ MeT
Voiass [ 1502, M6B ’EMSB
L |
< <&
VDD,..>4V, .tV ot Vrue With _
min ovn " “ovp = " THP VDDmin_ZVovn+Vovp+VTHP.

wide-swing biasing. [1]

O Even if we employ wide-swing biasing for low-voltage designs, three- or
higher stage op-amps will be indispensable in realizing large open-loop DC
gain.
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TWO-STAGE OP-AMP COMPENSATION
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Direct (or Miller) Compensation

d Compensation capacitor (C,)
between the output of the gain stages
causes pole-splitting and achieves

dominant pole compensation.
_ gm2

An RHP zero exists at  z,

C
I v
| Due to feed-forward component of
| the compensation current (i..).
} . gm2
| L The second pole is located at ¢, +c.
| . . . Emi
V. |$ - f = —=
wor oo e U The unity-gain frequency is f,, 27C.
N i v 4:3 o | [ A benign undershoot in step-
100/2
| ﬁ@AGBR s response due to the RHP zero
Unlabeled NMOS are 10/2. H_J
Unlabeled PMOS are 22/2. x10

“*All the op-amps presented have been designed in AMI C5N 0.5um CMOS process with scale=0.3 ym and L, ;,=2.
The op-amps drive a 30pF off-chip load offered by the test-setup.
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Drawbacks of Direct (Miller) Compensation

L The RHP zero decreases phase
margin
Requires large C. for
compensation (10pF here for a

oy 30pF load!).
11® : LCSOpF A Slow-speed for a given load, C,
I
VGTL } Vbias3% % 10012 :J; D POOI’ PSRR
v ::IMGTR Mot | Supply noise feeds to the output
M6BL } bias4 % ]

@AGBR M8E. 10072 through C.

Unlabeled NMOS are 10/2. H—) A Large layout size.

Unlabeled PMOS are 22/2.
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Indirect Compensation

VDD VDD

L The RHP zero can be ecliminated by
blocking the feed-forward compensation
current component by using

A common gate stage,

Vim
L il " A voltage buffer,
. e 30pF Common gate “embedded” in the
Mot Meﬁb cascode diff-amp, or
el ]|—Yoest ] A current mirror buffer.
Unlabeled NMOS are 10/2. %,—J d NOW, the Compensation current 1s fed-
E " back from the output to node-1 indirectly
An indirect-compensated op-amp thrOllgh a low-Z node-A.
using a common-gate stage. O Since node-1 is not loaded by C_, this
results in higher unity-gain frequency
(£,
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Indirect Compensation 1n a Cascoded Op-amp

VDD VDD

VDD

Vi ias
b"—(’ i e VDD

VDD

M3

L
@) v, ’? @ LCL
| % M1B 10/1(1]
|
| i | I i
MeTL I I meTR weTlL_°02 | 30pF
|
[ Vbiasa | I Vi 30/2
M6BL bias3 |
| HQ7M6BR wmsgl L2072 M5T maTl 10072
Viiass | — 30/2
st | — [ 1002
Unlabeled NMOS are 10/2. M5B MeB

Unlabeled PMOS are 44/2.

Unlabeled NMOS are 10/2.
Unlabeled PMOS are 22/2.

Indirect-compensation using Indirect-compensation using
cascoded current mirror load. cascoded diff-pair.

L Employing the common gate device “embedded” in the cascode structure

for indirect compensation avoids a separate buffer stage.
Lower power consumption.
Also voltage buffer reduces the swing which is avoided here.
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Analytical Modeling of Indirect Compensation
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The compensation
current (1) 1s indirectly
fed-back to node-1.

Amplifier Gain Stage
Block Diagram
i~ 'out
@ c 1/sC.+R,
— Q) gmaV1 R>

+

R 1s the resistance

T Yout  gttached to node-A.

+
gm1Vs<T> R:> C;=

<

Small signal analytical model
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Derivation of the Small-Signal Model
@ foc @ (I:I @
Resistance r, is WSCD " CQWVA “ 1/g,m§RA::CA (L) S Tt
assumed to be large.
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* *  The small-signal model
MDvs T @ - #”Rﬂé = w(}) 5 Fw.  for a common gate

s ’ " . indirect compensated op-
~ @ amp topology is

T 1= approximated to the

HA €L simplified model seen in
|

the last slide.

-1 -1
gmc>>r RA ”

CC>>C(: , ngsCD R% Cr = CD gm?v’@v) R% g Ca= Vou
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Pole-zero plot

d Pole p, is much farther away from f .

Can use smaller g_,=>less power!
O LHP zero improves phase margin.

L Much faster op-amp with lower
power and smaller C..

 Better slew rate as C. is smaller.
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Indirect Compensation Using Split-Length Devices

O As VDD scales down, cascoding is becoming tough. Then how to realize
indirect compensation as we have no low-Z node available?

O Solution: Employ split-length devices to create a low-Z node.
Creates a pseudo-cascode stack but its really a single device.

L In the NMOS case, the lower device is always in triode hence node-A is a
low-Z node. Similarly for the PMOS, node-A 1s low-Z.

Low-Z
node
D Low-Z node
Q—1 | t M1T </Tr'0de VDD NGCER
Trlode q WI(Li+L2) W/LE1qU|vaIent {
WL, W/(L4+Ly)
Low-Z WI/L,
node
Split-length 44/4(=22/2)
NMOS PMOS PMOS layout
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Split-Length Current Mirror Load (SLCL) Op-amp

VDD VDD
7048 Vivouy a0°
60dB— [ o
50dB—----- -0
40dB- L 200
3048 e
20dB— L -§D"
10dB- - go°
0dB- --100°
-10dB— ~-120°
-20dB- L1400
-30dB --160°
-40dB— —-180"
50dB N\ f-2000
-60dB L -220°
T OB |- -2 40°
v ’_I :l 100Hz 1KHz 10KHz 100KHz 1MHz 10MHz 100MHz 1GHz
| bias3 | |
MeTL | l::l M6TR werl L5302 | Frequency Response
M6BL I Vi I I 50/2 |
\Q7MGBR M8B 2 60V ¥ivout) V[win]
2.59v- iof
Unlabeled NMOS are 10/2. 2.58Y~
Unlabeled PMOS are 22/2. 2.57V s
2,56V
2,55V
[ The current mirror load devices are o
. 2,52
split-length to create low-Z node-A. 251V
) 2.49v]
O Here, f =20MHz, PM=75° and 2.48v . . . .
un 0.0ps 0.2ps 0.4ps 0.6ps 0.8ps
tS_60nS' Small step-input settling in follower

configuration
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SLCL Op-amp Analysis
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d Here f,,=3.77f

v" LHP zero appears at a higher
frequency than f .



Split-Length Diff-Pair (SLDP) Op-amp

VDD VDD

V[vout)

50dB—
30dB-

-10dB—
-30dB-
-50dB-
-70dB-
-90dB

10484

| |
| l::l M6TR MaT!
M6BL I Vbias4 I |

T
100Hz 1TKHz 10KHz

TH

1MHz 100MHz 10GHz

Frequency Response

\Q7M65R ige 50/2 2 66V Vivout) Vivin)
2.64V- L—J
Unlabeled NMOS are 10/2. 2.62V+
Unlabeled PMOS are 22/2. 2 GOV i
2.58V- !
. . . . 2.56V-
O The diff-pair devices are split-length to -
create low-Z node-A. o
b
2.48V I I I |
O Here, f =35MHz, PM=62°, t =75ns. Tois  odws oA oo oows

(1 Better PSRR due to isolation of node-A
from the supply rails.
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SLDP Op-amp Analysis

. Em2 gmpCL
‘\J m

4gmn _ 4*/§gml ~2"/§w

-~ e
~—

1TU3C.+C,)  3(C.+C,) 3 un
C A ¢ A

| 1 Here f,,=0.94f

— Vout un?
C.

_ LHP zero appears slightly before
7 f . and flattens the magnitude
response.

This may degrade the phase
margin.
 Not as good as SLCL, but is of
great utility in multi-stage op-amp
design due to higher PSRR.
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Test Chip 1: Two-stage Op-amps
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O AMI C5N 0.5um CMOS, 1.5mmX1.5mm die size.
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Test Results and |

Performance Comparison

30

ISE®ST

VERS

Performance comparison of the op-amps for C; =30pF.

)

S K Op-amp Apc fun Cc PM t Power Layout
- Topology (dB) | (MHz) | (pF) (ns) (mW) area
/ (mmz)
Miller 57 2.5 10 74° | 270 1.2 0.031
Miller with Rz (t,=250ns) Miller 57 2.7 10 85° | 250 1.2 0.034
with R,
SLCL 66 20 2 75° 60 0.7 0.015
(this work)
Vin /)_“_M_H— SLDP 60 35 2 62° 75 0.7 0.015
% (this work)

SLCL Indirect (t,=60ns)

.

/[ '\Vout

SLDP Indirect (t,=75ns)

Saxena

O 10X gain bandwidth (f,).

O 4X faster settling time.
U 55% smaller layout area.

U 40% less power consumption.



Effect of LHP-zero on Settling

U In certain cases with indirect
compensation, the LHP-zero (o, yp)
shows up near f .

Causes gain flattening and degrades PM 190
Hard to push out due to topology )
restrictions .

U Ringing in closed-loop step response
This ringing is uncharacteristic of the 2nd
order system.

Used to be a benign undershoot with the
RHP zero, here it can be pesky

Is this settling behavior acceptable?

O Watch out for the o,y for clean settling
behavior! N S S S S —

Magnitude (dB)

135

(deg)

Phase

Amplitude

Small step-input settling in follower
configuration
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