Short-Channel Analog Design Additional Slides

Vishal Saxena ECE, Boise State University

Feb 1, 2011

Vishal Saxena Short-Channel Design

- Circuit designers care about:
 - Gain $\rightarrow g_m r_o$

- Gain $\rightarrow g_m r_o$
- Bandwidth $\rightarrow g_m, f_T, C_{gs}, C_{gs}$

- Gain $\rightarrow g_m r_o$
- Bandwidth $\rightarrow g_m, f_T, C_{gs}, C_{gs}$
- Power $\rightarrow I_D$

- Gain $\rightarrow g_m r_o$
- Bandwidth $\rightarrow g_m, f_T, C_{gs}, C_{gs}$
- Power $\rightarrow I_D$
- Voltage Swing $\rightarrow V_{DS,sat}$

- Gain $\rightarrow g_m r_o$
- Bandwidth $\rightarrow g_m, f_T, C_{gs}, C_{gs}$
- Power $\rightarrow I_D$
- Voltage Swing $\rightarrow V_{DS,sat}$
- Noise

- Gain $\rightarrow g_m r_o$
- Bandwidth $\rightarrow g_m, f_T, C_{gs}, C_{gs}$
- Power $\rightarrow I_D$
- Voltage Swing $\rightarrow V_{DS,sat}$
- Noise
- Linearity

- Gain $\rightarrow g_m r_o$
- Bandwidth $\rightarrow g_m, f_T, C_{gs}, C_{gs}$
- Power $\rightarrow I_D$
- Voltage Swing $\rightarrow V_{DS,sat}$
- Noise
- Linearity
- Circuit matching

- Gain $\rightarrow g_m r_o$
- Bandwidth $\rightarrow g_m, f_T, C_{gs}, C_{gs}$
- Power $\rightarrow I_D$
- Voltage Swing $\rightarrow V_{DS,sat}$
- Noise
- Linearity
- Circuit matching
- Layout designers:

- Gain $\rightarrow g_m r_o$
- Bandwidth $\rightarrow g_m, f_T, C_{gs}, C_{gs}$
- Power $\rightarrow I_D$
- Voltage Swing $\rightarrow V_{DS,sat}$
- Noise
- Linearity
- Circuit matching
- Layout designers:
 - mostly care about W/L, layout matching and circuit isolation (substrate noise)

Short Channel Characteristics

•
$$i_D = v_{sat} C'_{ox} (v_{GS} - V_{THN} - V_{DS,sat})$$

• Square law equations no longer valid (but intuition is!)

•
$$i_D = v_{sat} C_{ox}^{'} (v_{GS} - V_{THN} - V_{DS,sat})$$

• velocity saturation and overshoot effects

•
$$i_D = v_{sat} C_{ox}^{'} (v_{GS} - V_{THN} - V_{DS,sat})$$

- velocity saturation and overshoot effects
- Examples use the 50nm CMOS process from the textbook.

•
$$i_D = v_{sat} C_{ox}^{'} (v_{GS} - V_{THN} - V_{DS,sat})$$

- velocity saturation and overshoot effects
- Examples use the 50nm CMOS process from the textbook.

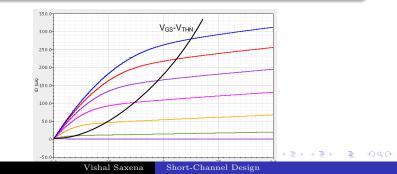
•
$$V_{DD} = 1V$$
. $L_{min} = 50n$

•
$$i_D = v_{sat} C_{ox}^{'} (v_{GS} - V_{THN} - V_{DS,sat})$$

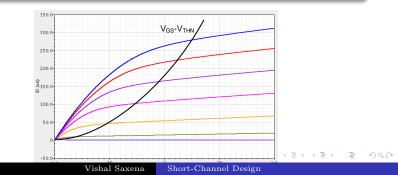
- velocity saturation and overshoot effects
- Examples use the 50nm CMOS process from the textbook.

•
$$V_{DD} = 1V$$
. $L_{min} = 50n$

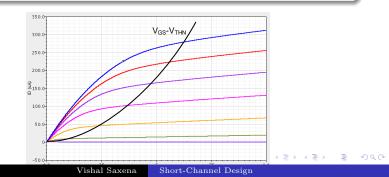
•
$$V_{THN} = V_{THP} = 280 \ mV$$


Short Channel Device Characteristics contd.

• The devices appear to go into saturation earlier than predicted by $V_{DS,sat} = V_{GS} - V_{THN}$


Short Channel Device Characteristics contd.

- The devices appear to go into saturation earlier than predicted by $V_{DS,sat} = V_{GS} V_{THN}$
 - The actual charge distribution is a function of V_{DS} and $Q'_{I}(y)$ becomes zero earlier (i.e. at a lower $V_{DS,sat}$).


Short Channel Device Characteristics contd.

- The devices appear to go into saturation earlier than predicted by $V_{DS,sat} = V_{GS} V_{THN}$
 - The actual charge distribution is a function of V_{DS} and $Q'_{I}(y)$ becomes zero earlier (i.e. at a lower $V_{DS,sat}$).
 - Is this good?

Short Channel Device Characteristics contd.

- The devices appear to go into saturation earlier than predicted by $V_{DS,sat} = V_{GS} V_{THN}$
 - The actual charge distribution is a function of V_{DS} and $Q'_{I}(y)$ becomes zero earlier (i.e. at a lower $V_{DS,sat}$).
 - Is this good?
 - Not really, need to look at the region where r_o is large and that occurs when the device is well into saturation :(

• For short channel devices, the relation $V_{DS,sat} = V_{GS} - V_{THN}$ is meaningless

- For short channel devices, the relation $V_{DS,sat} = V_{GS} V_{THN}$ is meaningless
- Now, we'll talk in terms of the gate overdrive voltage

Short Channel contd.

- For short channel devices, the relation $V_{DS,sat} = V_{GS} V_{THN}$ is meaningless
- Now, we'll talk in terms of the gate overdrive voltage

•
$$V_{ov} = V_{GS} - V_{THN}
e V_{DS,sat}$$

Short Channel contd.

- For short channel devices, the relation $V_{DS,sat} = V_{GS} V_{THN}$ is meaningless
- Now, we'll talk in terms of the gate overdrive voltage

•
$$V_{ov} = V_{GS} - V_{THN}
e V_{DS,sat}$$

- For short channel devices, the relation $V_{DS,sat} = V_{GS} V_{THN}$ is meaningless
- Now, we'll talk in terms of the gate overdrive voltage

•
$$V_{ov} = V_{GS} - V_{THN}
e V_{DS,sat}$$

•
$$V_{ov} = 70 mV \rightarrow V_{GS} = 350 mV$$

- For short channel devices, the relation $V_{DS,sat} = V_{GS} V_{THN}$ is meaningless
- Now, we'll talk in terms of the gate overdrive voltage

•
$$V_{ov} = V_{GS} - V_{THN}
e V_{DS,sat}$$

•
$$V_{ov} = 70 mV \rightarrow V_{GS} = 350 mV$$

•
$$f_T \alpha \frac{V_{ov}}{L}$$

- For short channel devices, the relation $V_{DS,sat} = V_{GS} V_{THN}$ is meaningless
- Now, we'll talk in terms of the gate overdrive voltage

•
$$V_{ov} = V_{GS} - V_{THN}
e V_{DS,sat}$$

• We can use $V_{ov} = 0.05 V_{DD}$ as a starting point for high-speed design (build your own intuition)

•
$$V_{ov} = 70 mV \rightarrow V_{GS} = 350 mV$$

•
$$f_T \alpha \frac{V_{ov}}{L}$$

• Use L = 2.5 times L_{min} for a good trade-off between speed and gain $\rightarrow L = 100n$

- For short channel devices, the relation $V_{DS,sat} = V_{GS} V_{THN}$ is meaningless
- Now, we'll talk in terms of the gate overdrive voltage

•
$$V_{ov} = V_{GS} - V_{THN}
e V_{DS,sat}$$

•
$$V_{ov} = 70 mV \rightarrow V_{GS} = 350 mV$$

•
$$f_T \alpha \frac{V_{ov}}{L}$$

- Use L=2-5 times L_{min} for a good trade-off between speed and gain ${\rightarrow}L=100n$
- Increasing V_{ov} results in higher speed, but at a cost of reduced output swing

Low Frequency Incremental Model

• First order Taylor series expansion of i_D

Low Frequency Incremental Model

• First order Taylor series expansion of
$$i_D$$

•
$$i_d = \frac{\partial i_D}{\partial v_{GS}} v_{gs} + \frac{\partial i_D}{\partial v_{SB}} v_{sb} + \frac{\partial i_D}{\partial v_{DS}} v_{ds}$$

Low Frequency Incremental Model

• First order Taylor series expansion of
$$i_D$$

•
$$i_d = \frac{\partial i_D}{\partial v_{GS}} v_{gS} + \frac{\partial i_D}{\partial v_{SB}} v_{sb} + \frac{\partial i_D}{\partial v_{DS}} v_{ds}$$

•
$$I_d = g_m v_{gs} + g_{mb} v_{sb} + g_{ds} v_{ds}$$

Low Frequency Incremental Model

• First order Taylor series expansion of i_D

•
$$i_d = \frac{\partial i_D}{\partial v_{GS}} v_{gS} + \frac{\partial i_D}{\partial v_{SB}} v_{sb} + \frac{\partial i_D}{\partial v_{DS}} v_{dS}$$

• $i_d = g_m v_{gS} + g_{mb} v_{sb} + g_{dS} v_{dS}$

• Just need to know the small signal parameters

Square Law Model

• In saturation region, g_m is given by

Vishal Saxena Short-Channel Design

Square Law Model

• In saturation region,
$$g_m$$
 is given by

•
$$g_m = \sqrt{2\beta I_D}$$

Vishal Saxena Short-Channel Design

- 4 同 ト 4 臣 ト 4 臣 ト

Square Law Model

• In saturation region,
$$g_m$$
 is given by

•
$$g_m = \sqrt{2\beta I_D}$$

• $g_m = \beta V_{ov}$

<ロト <問 > < 臣 > < 臣 >

Square Law Model

• In saturation region, g_m is given by

•
$$g_m = \sqrt{2\beta I_D}$$

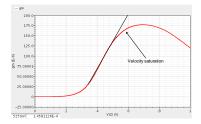
• $g_m = \beta V_{ov}$
• $g_m = \frac{2I_D}{V_{ov}}$

Weak Inversion g_m

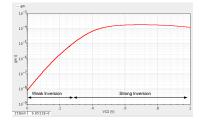
• In weak inversion (subthreshold) we have exponential I-V characteristics

Weak Inversion g_m

• In weak inversion (subthreshold) we have exponential I-V characteristics


•
$$I_D \approx I_{D0} \frac{W}{L} e^{\frac{V_{GS} - V_{THN}}{nV_T}}$$

Weak Inversion g_m

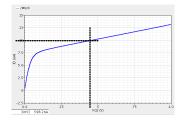

• In weak inversion (subthreshold) we have exponential I-V characteristics

•
$$I_D \approx I_{D0} \frac{W}{L} e^{\frac{V_{GS} - V_{THN}}{nV_T}}$$

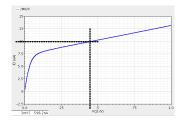
• $g_m = \frac{\partial i_D}{\partial v_{CS}} = \frac{I_D}{nV_T} \propto I_D$

Transconductance

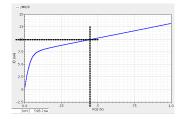
$$g_m = \beta \left(V_{GS} - V_{THN} \right)$$

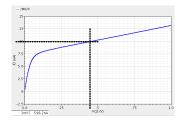


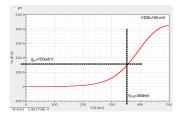
$$g_{m_{sub-V_T}} = \frac{I_D}{nV_T}$$


イロト イヨト イヨト イヨト

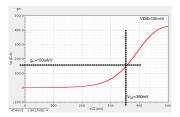
æ


• Given V_{ov} and a specified g_m , pick I_D and W.

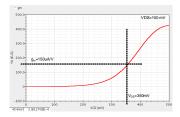

- \bullet Given V_{ov} and a specified $g_m,$ pick I_D and W.
- Here, for a $g_m = 150 \frac{\mu A}{V}$ we pick $I_D = 10 \mu A$ for sufficient current drive.


- \bullet Given V_{ov} and a specified $g_m,$ pick I_D and W.
- Here, for a $g_m = 150 \frac{\mu A}{V}$ we pick $I_D = 10 \mu A$ for sufficient current drive.
 - This leads to W=50 for NMOS and W=100 for PMOS.

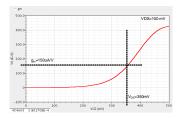
- \bullet Given V_{ov} and a specified $g_m,$ pick I_D and W.
- Here, for a $g_m = 150 \frac{\mu A}{V}$ we pick $I_D = 10 \mu A$ for sufficient current drive.
 - This leads to W=50 for NMOS and W=100 for PMOS.
 - More on this point later.

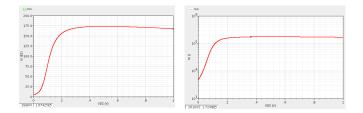


 \bullet Given V_{ov} and a specified $g_m,$ pick I_D and W.

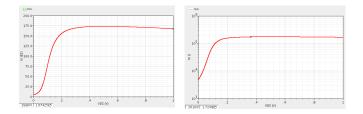


글▶ 글

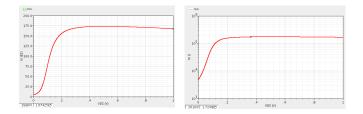

- \bullet Given V_{ov} and a specified $g_m,$ pick I_D and W.
- Here, for a $g_m = 150 \frac{\mu A}{V}$ we pick $I_D = 10 \mu A$ for sufficient current drive.


- \bullet Given V_{ov} and a specified $g_m,$ pick I_D and W.
- Here, for a $g_m = 150 \frac{\mu A}{V}$ we pick $I_D = 10 \mu A$ for sufficient current drive.
 - This leads to W = 50 for NMOS and W = 100 for PMOS.

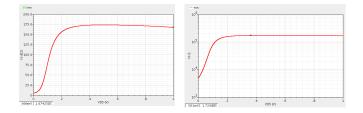
- \bullet Given V_{ov} and a specified $g_m,$ pick I_D and W.
- Here, for a $g_m = 150 \frac{\mu A}{V}$ we pick $I_D = 10 \mu A$ for sufficient current drive.
 - This leads to W = 50 for NMOS and W = 100 for PMOS.
 - More on this point later.



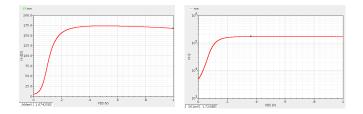
Output Resistance r_o


• To determine $V_{DS,sat}$, look at the point where the output resistance starts to increase (Here, $V_{DS,sat} = 50mV$)

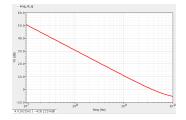
Output Resistance r_o


- To determine $V_{DS,sat}$, look at the point where the output resistance starts to increase (Here, $V_{DS,sat} = 50mV$)
- We get considerably higher output resistances at a larger $V_{DS}($ important!)

Output Resistance r_o


- To determine $V_{DS,sat}$, look at the point where the output resistance starts to increase (Here, $V_{DS,sat} = 50mV$)
- We get considerably higher output resistances at a larger $V_{DS}(\text{important!})$
- Cannot just model by a simple equation $r_o = \frac{1}{\lambda l_{0,st}}$

Open-loop Gain $(g_m r_o)$


• The open loop gain is roughly $g_m r_o = 150 \frac{\mu A}{V} \cdot 170 k \Omega \approx 25$

Open-loop Gain $(g_m r_o)$

• The open loop gain is roughly $g_m r_o = 150 \frac{\mu A}{V} \cdot 170 k\Omega \approx 25$ • considerably lower than the open-loop gain in a long channel process.

Transition Frequency

- f_T for a 50/2 NMOS is around 4GHz.
- Can look at the f_T when V_{GS} is swept.

- The sizes an biasing selected in this example (from textbook) is a good starting point for a general design.
- If the sizes and biasing will eventually depend upon your design specifications.
- Also need to account for PVT shifts.
- Characterize the technology models well and generate a table for your selected design parameters.

Design Table

Short-channel MOSFET parameters for general analog design VDD = 1 V and a scale factor of 50 nm (scale = 50e-9)			
Parameter	NMOS	PMOS	Comments
Bias current, I_D	10 µA	10 µA	Approximate, see Fig. 9.31
W/L	50/2	100/2	Selected based on I_D and V_{ov}
Actual W/L	2.5µm/100nm	5µm/100nm	L _{min} is 50 nm
$V_{ extsf{DS,sat}} extsf{ and } V_{ extsf{SD,sat}} \ V_{ extsf{onn}} extsf{ and } V_{ extsf{onp}}$	50 mV 70 mV	50 mV 70 mV	However, see Fig. 9.32 and the associated discussion
$V_{\rm GS}$ and $V_{\rm SG}$	$350 \mathrm{mV}$	$350 \mathrm{mV}$	No body effect
V _{THN} and V _{THP}	280 mV	280 mV	Typical
$\partial V_{THN,P} / \partial T$	$-0.6 \text{ mV/C}^{\circ}$	$-0.6 \text{ mV/C}^{\circ}$	Change with temperature
v_{sam} and v_{sam}	110 x 10 ³ m/s	90 x 10 ³ m/s	From the BSIM4 model
t _{ax}	14 Å	14 Â	Tunnel gate current, 5 A/cm ²
$C'_{ox} = \epsilon_{ox}/t_{ox}$	$25 f F/\mu m^2$	$25 f F/\mu m^2$	$C_{ox} = C'_{ox}WL \cdot (scale)^2$
C_{onn} and C_{onp}	6.25 <i>f</i> F	12.5 <i>f</i> F	PMOS is two times wider
C_{gan} and C_{zgp}	4.17 <i>f</i> F	8.34 <i>f</i> F	$C_{gz} = \frac{2}{3}C_{ox}$
$C_{\rm gab}$ and $C_{\rm dgp}$	1.56 <i>f</i> F	3.7 <i>f</i> F	$C_{gd} = CGDO \cdot W \cdot scale$
g_{nm} and g_{np}	150 μA/V	150 μA/V	At $I_D = 10 \ \mu A$
r_{on} and r_{op}	167 kΩ	333 kΩ	Approximate at $I_D = 10 \ \mu A$
$g_{nm}r_{on}$ and $g_{np}r_{op}$	25 V/V	50 V/V	!!Open circuit gain!!
λ_n and λ_p	0.6 V ⁻¹	0.3 V ⁻¹	L = 2
f_{In} and f_{Ip}	6000 MHz	3000 MHz	Approximate at $L = 2$

Table 9.2 Typical parameters for analog design using the *short-channel* CMOS process discussed in this book. These parameters are valid only for the device sizes and currents listed.

・ロト ・ 日 ト ・ ヨ ト ・ ヨ ト

æ

References I

R. J. Baker, CMOS Circuit Design, Layout and Simulation, revised 2nd Edition, Wiley-IEEE, 2008.

< • • • **6**

ъ