

Loop Stability Analysis

Boise, 20/Apr/2012

Vishal Saxena

- The STB analysis linearizes the circuit about the DC operating point and computes the loop-gain, gain and phase margins (if the sweep variable is frequency), for a feedback loop or a gain device [1].
- Refer to the Spectre Simulation Refrence [1] and [2] for details.

Example Single-ended Opamp Schematic

STB Analysis Test Bench

- Pay attention to the **iprobe** component (from analogLib)
 - Acts as a short for DC, but breaks the loop in stb analysis
- Place the probe at a point where it completely breaks (all) the loop(s).

- Annotating the node voltages and DC operating points of the devices helps debug the design
 - Check device gds to see if its in triode or saturation regions

Simulation Setup

Always have dc analysis on for debugging purpose

Bode Plot Setup

Direct Plot Form	🖀 Virtuoso® Analog Des	ign Environment (3) -	FDOpamps sim_Opamp1_AC schemat 🗕 🗆 🕽
Plotting Mode Append	S <u>e</u> ssion Set <u>u</u> p <u>A</u> nalyses <u>V</u> a	ariables <u>O</u> utputs <u>S</u> imulation	Results Tools Help cādence
Analysis		ilator: snectre State: sn	Plot Outputs
● stb	Design Variables	Main Fo <u>r</u> m	Print
Function	Name \land Value	Transient Signal Transient Minus DC	Annotate
Loop Gain Stability Summary		Transient <u>S</u> um	Vector
O Phase Margin O Gain Margin		Transient Diff <u>e</u> rence	Violations Display
PM Frequency GM Frequency		AC <u>M</u> agnitude AC dB10	<u>S</u> ave [1]
Modifier		AC dB <u>2</u> 0	Select
		AC <u>P</u> hase AC Magnituda, Phasa	Printing/Plotting Options Options
Magnitude O Phase I Magnitude and Phase		AC <u>G</u> ain & Phase	
Magnitude Modifier		Equivalent <u>O</u> utput Noise	
🔾 None 🔾 dB10 💿 dB20		Equivalent Input Noise Squared Output Noise	
Add To Outputs 🗹 🛛 🛛 Plot		Squared Input <u>N</u> oise Noise Figure	
Press plot button on this form	> Results in /tmp/simulation/vsa	<u>D</u> C	schematic
OK Cancel Help	10 Main Form		

• Results->Direct Plot-> Main Form

Vishal Saxena <vishalsaxena@boisestate.edu>

Open Loop Response Bode Plots

- Here, *f*_{un}=152.5 MHz, PM=41.8°
- Try to use the stb analysis while the circuit is in the desired feedback configuration
 - Break the loop with realistic DC operation points

Transient Step Response Test Bench

- Transient step-response verifies the closed-loop stability
- Use small as wells as large steps for characterization
- iprobe acts as a short (can remove it)

Small Step Response

- Observe the ringing (PM was 41°)
 - Compensate more

• Note the slewing in the output

[1] Spectre User Simulation Guide, pages 160-165

http://www.designers-guide.org/Forum/YaBB.pl?num=1170321868

[2] M. Tian, V. Viswanathan, J. Hangtan, K. Kundert, "Striving for Small-Signal Stability: Loopbased and Device-based Algorithms for Stability Analysis of Linear Analog Circuits in the Frequency Domain," Circuits and Devices, Jan 2001.

http://www.kenkundert.com/docs/cd2001-01.pdf

[3] https://secure.engr.oregonstate.edu/wiki/ams/index.php/Spectre/STB