

ECE518 Memory/Clock Synchronization IC Design

Voltage Controlled Oscillators

Dr. Vishal Saxena

Electrical and Computer Engineering Department Boise State University, Boise, ID

Voltage-Controlled Oscillator

$$\Box f_{out} = f_{c0} + K_{VCO} \cdot V_c(t)$$

Voltage-Controlled Oscillator

□ Incremental phase-domain relationship

 $\Box \ \Phi_{out}(t) = 2\pi K_{VCO} \int v_c(t) dt$ $\Box \ \Phi_{out}(s) = (2\pi K_{VCO}/s) V_c(s)$

VCO Types

- Ring Oscillator VCOs
 - Easy CMOS integration
 - Wide tuning range (3-5X)
 - Poor phase noise performance

- LC Oscillator VCOs
 - Large area (on-chip inductors)
 - Narrow tuning range (20-30%)
 - Good phase noise performance
 - Higher design and characterization effort

Ring Oscillator VCOs

- VCO usually consists of two parts
 - Controlled voltage to current (V2I) circuit
 - Current-controlled ring oscillator (CCO)
- □ Can be single-ended or differential
 - Differential design allows for even number of oscillator stages if diffamps used for delay cells

VCO Design Concerns

- □ Large frequency range to cover PVT variations
 - 3-5X typical
- □ Single-ended or differential?
 - Use differential for 50% duty cycle
- \Box VCO gain (K_{VCO}) affects loop stability
 - Better to have moderate K_{VCO} over large tuning range
- □ More delay stages -> easier to initiate oscillation
 - DC gain >2 for 3 stages
 - DC gain > $\sqrt{2}$ for 4 stages

Current-Controlled Oscillator (CCO)

 Control the bias current in the inverting stages to control the delay and hence the frequency of oscillation

Linearized CCO

 Use a source degenerated CS stage as a linear voltage to current (V2I) converter

Supply-Tuned Ring Oscillator

$$K_{VCO} = \frac{O_{VCO}}{\partial V_c} = \frac{\rho}{2nC_{stage}}$$

Capacitive-Tuned Ring Oscillator

Symmetric Load Ring Oscillator

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 31, NO. 11, NOVEMBER 1996

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 38, NO. 11, NOVEMBER 2003

Low-Jitter Process-Independent DLL and PLL Based on Self-Biased Techniques

John G. Maneatis

Self-Biased High-Bandwidth Low-Jitter 1-to-4096 Multiplier Clock Generator PLL

John G. Maneatis, *Member, IEEE*, Jaeha Kim, *Student Member, IEEE*, Iain McClatchie, Jay Maxey, and Manjusha Shankaradas

1795

Current Controlled Oscillator (CCO)

Fig. 22. Split-tuned current controlled oscillator.

A Wide-Tracking Range Clock and Data Recovery Circuit

Pavan Kumar Hanumolu, Member, IEEE, Gu-Yeon Wei, Member, IEEE, and Un-Ku Moon, Senior Member, IEEE

Differential Supply Regulated VCO

. Supply regulated tuning concept.

Fig. 8. Final VCO configuration.

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 12, DECEMBER 2006

A 0.5-GHz to 2.5-GHz PLL With Fully Differential Supply Regulated Tuning

Merrick Brownlee, Student Member, IEEE, Pavan Kumar Hanumolu, Student Member, IEEE, Kartikeya Mayaram, Fellow, IEEE, and Un-Ku Moon, Senior Member, IEEE

© Vishal Saxena

Supply-Regulated Split-Tuning

Fig. 4. Conventional regulators used in a supply-regulated PLL: (a) using a pass transistor. (b) without using the pass transistor.

IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 44, NO. 8, AUGUST 2009

Low-Power Supply-Regulation Techniques for Ring Oscillators in Phase-Locked Loops Using a Split-Tuned Architecture

Abhijith Arakali, *Student Member, IEEE*, Srikanth Gondi, *Member, IEEE*, and Pavan Kumar Hanumolu, *Member, IEEE*

References

- 1. B. Razavi, "Design of CMOS Analog Integrated Circuits," McGraw Hill, 2002.
- 2. B. Razavi, "RF Microelectronics," 2nd Ed., Prentice Hall, 2012.