

SRAM Architecture

Vishal Saxena, Boise State University (vishalsaxena@boisestate.edu)

Outline

- Memory Arrays
- □ SRAM Architecture
 - SRAM Cell
 - Decoders
 - Column Circuitry
 - Multiple Ports
- Serial Access Memories

Memory Arrays

6T SRAM Cell

- □ Cell size accounts for most of array size
 - Reduce cell size at expense of complexity
- □ 6T SRAM Cell
 - Used in most commercial chips
 - Data stored in cross-coupled inverters
- □ Read:
 - Precharge bit, bit_b
 - Raise wordline
- □ Write:
 - Drive data onto bit, bit_b
 - Raise wordline

SRAM Read

- Precharge both bitlines high
- □ Then turn on wordline
- One of the two bitlines will be pulled down by the cell
- □ Ex: A = 0, A_b = 1
 - bit discharges, bit_b stays high
 - But A bumps up slightly
- □ Read stability
 - A must not flip
 - N1 >> N2

SRAM Write

- Drive one bitline high, the other low
- □ Then turn on wordline
- □ Bitlines overpower cell with new value
- \Box Ex: A = 0, A_b = 1, bit = 1, bit_b = 0
 - Force A_b low, then A rises high
- □ Writability
 - Must overpower feedback inverter
 - N2 >> P1

SRAM Sizing

- □ High bitlines must not overpower inverters during reads
- But low bitlines must write new value into cell

SRAM Column Example

Read

Write

Bitline Conditioning

More Cells

SRAM Cell

data_s1

 \bigtriangledown

 $\overline{\phi_2}$

bit_b_v1f

SRAM Layout

□ Cell size is critical: 26 x 45 λ (even smaller in industry) □ Tile cells sharing V_{DD}, GND, bitline contacts

12T SRAM Cell

- Basic building block: SRAM Cell
 - Holds one bit of information, like a latch
 - Must be read and written
- □ 12-transistor (12T) SRAM cell
 - Use a simple latch connected to bitline
 - 46 x 75 λ unit cell

Thin Cell

- □ In nanometer CMOS
 - Avoid bends in polysilicon and diffusion
 - Orient all transistors in one direction
- Lithographically friendly or thin cell layout fixes this
 - Also reduces length and capacitance of bitlines

Commercial SRAMs

- □ Five generations of Intel SRAM cell micrographs
 - Transition to thin cell at 65 nm
 - Steady scaling of cell area

Decoders

- □ n:2ⁿ decoder consists of 2ⁿ n-input AND gates
 - One needed for each row of memory
 - Build AND from NAND or NOR gates

Static CMOS

Pseudo-nMOS

Decoder Layout

- Decoders must be pitch-matched to SRAM cell
 - Requires very skinny gates

Large Decoders

- \Box For n > 4, NAND gates become slow
 - Break large gates into multiple smaller gates

Predecoding

Many of these gates are redundant

- Factor out common gates into predecoder
- Saves area
- Same path effort

Column Circuitry

- □ Some circuitry is required for each column
 - Bitline conditioning
 - Sense amplifiers
 - Column multiplexing

Bitline Conditioning

Precharge bitlines high before reads

Equalize bitlines to minimize voltage difference when using sense amplifiers

Sense Amplifiers

- Bitlines have many cells attached
 - Ex: 32-kbit SRAM has 128 rows x 256 cols
 - 128 cells on each bitline
- $\Box \quad t_{pd} \propto \text{(C/I) } \Delta V$
 - Even with shared diffusion contacts, 64C of diffusion capacitance (big C)
 - Discharged slowly through small transistors (small I)
- □ Sense amplifiers are triggered on small voltage swing (reduce ΔV)

Differential Pair Amp

- Differential pair requires no clock
- But always dissipates static power

Clocked Sense Amp

- □ Clocked sense amp saves power
- Requires sense_clk after enough bitline swing
- □ Isolation transistors cut off large bitline capacitance

Twisted Bitlines

- □ Sense amplifiers also amplify noise
 - Coupling noise is severe in modern processes
 - Try to couple equally onto bit and bit_b
 - Done by *twisting* bitlines

Column Multiplexing

- □ Ex: 2 kword x 16 folded into 256 rows x 128 columns
 - Must select 16 output bits from the 128 columns
 - Requires 16 8:1 column multiplexers

Tree Decoder Mux

- □ Column mux can use pass transistors
 - Use nMOS only, precharge outputs
- □ One design is to use k series transistors for 2^k:1 mux
 - No external decoder logic needed

Single Pass-Gate Mux

• Or eliminate series transistors with separate decoder

Ex: 2-way Muxed SRAM

Multiple Ports

- □ We have considered single-ported SRAM
 - One read or one write on each cycle
- Multiported SRAM are needed for register files
- □ Examples:
 - Multicycle MIPS must read two sources or write a result on some cycles
 - Pipelined MIPS must read two sources and write a third result each cycle
 - Superscalar MIPS must read and write many sources and results each cycle

Dual-Ported SRAM

- □ Simple dual-ported SRAM
 - Two independent single-ended reads
 - Or one differential write

- Do two reads and one write by time multiplexing
 - Read during ph1, write during ph2

Multi-Ported SRAM

- Adding more access transistors hurts read stability
- Multiported SRAM isolates reads from state node
- □ Single-ended bitlines save area

Large SRAMs

- □ Large SRAMs are split into subarrays for speed
- □ Ex: UltraSparc 512KB cache
 - 4 128 KB subarrays
 - Each have 16 8KB banks
 - 256 rows x 256 cols / bank
 - 60% subarray area efficiency
 - Also space for tags & control

[Shin05]

ROM Example

- □ 4-word x 6-bit ROM
 - Represented with dot diagram
 - Dots indicate 1's in ROM

Word 3: 101010

Looks like 6 4-input pseudo-nMOS NORs

Vishal Saxena

ROM Array Layout

□ Unit cell is $12 \times 8 \lambda$ (about 1/10 size of SRAM)

Row Decoders

- □ ROM row decoders must pitch-match with ROM
 - Only a single track per word!

Complete ROM Layout

Vishal Saxena

References

1. Weste, Harris, "CMOS VLSI Design," 2nd Ed., Addison Wesley.