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Feedback View of Oscillators
 An oscillator may be viewed as a “badly-designed” negative-feedback 

amplifier—so badly designed that it has a zero or negative phase margin.

For the above system to oscillate, must the noise at ω1 appear at the input?

No, the noise can be anywhere in the loop. For example, consider the system shown in 
figure below, where the noise N appears in the feedback path. Here,

Thus, if the loop transmission, 
H1H2H3, approaches -1 at ω1, N is 
also amplified indefinitely.
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Y/X in the Vicinity of ω = ω1

Derive an expression for Y/X in figure below in the vicinity of ω = ω1 if H(jω1) = -1.

We can approximate H(jω) by the first two terms in its Taylor series:

Since H(jω1) = -1, we have

As expected, Y/X → ∞ as Δω → 0, with a “sharpness” proportional to dH/dω.
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Barkhausen’s Criteria

 For the circuit to reach steady state, the signal returning to A must exactly 
coincide with the signal that started at A. We call ∠ H(jω1) a “frequency-
dependent” phase shift to distinguish it from the 180 ° phase due to negative 
feedback.

 Even though the system was originally configured to have negative feedback, 
H(s) is so “sluggish” that it contributes an additional phase shift of 180 ° at ω1, 
thereby creating positive feedback at this frequency.
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Significance of |H(jw1)| = 1

 For a noise component at ω1 to “build up” as it circulates around the loop with 
positive feedback, the loop gain must be at least unity.

 We call |H(jω1)| = 1 the “startup” condition.

 What happens if |H(jω1)| > 1 and ∠H(jω1) = 180°? The growth shown in figure 
above still occurs but at a faster rate because the returning waveform is 
amplified by the loop. 

 Note that the closed-loop poles now lie in the right half plane.
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Voltage-Controlled Oscillators: Characteristic

 The output frequency varies from ω1 to ω2 (the required tuning range) as the 
control voltage, Vcont, goes from V1 to V2. 

 The slope of the characteristic, KVCO, is called the “gain” or “sensitivity” of the 
VCO and expressed in rad/Hz/V.
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Phase Noise: Basic Concepts

 The noise of the oscillator devices randomly perturbs the zero crossings. To 
model this perturbation, we write x(t) = Acos[ωct + Φn(t)], The term Φn(t) is 
called the “phase noise.”

 From another perspective, the 
frequency experiences random 
variations, i.e., it departs from ωc
occasionally.
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Phase Noise: Declining Phase Noise “Skirts”

Explain why the broadened impulse cannot assume the shape shown below.

This spectrum occurs if the oscillator frequency has equal probability of appearing 
anywhere between ωc - Δω and ωc + Δω. However, we intuitively expect that the oscillator 
prefers ωc to other frequencies, thus spending lesser time at frequencies that are farther 
from ωc. This explains the declining phase noise “skirts”.

The spectrum can be related to the time-domain expression.



© Vishal Saxena -9-

Various Factors of 4 and 2

 (1) since Φn(t) in equation above is multiplied by sin ωct, its power spectral 
density, SΦn, is multiplied by 1/4 as it is translated to ±ωc;

 (2) A spectrum analyzer measuring the resulting spectrum folds the negative   
frequency spectrum atop the positive-frequency spectrum, raising the spectral 
density by a factor of 2.
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How is the Phase Noise Quantified?

 Since the phase noise falls at frequencies farther from ωc, it must be specified 
at a certain “frequency offset,” i.e., a certain difference with respect to ωc. 

 We consider a 1-Hz bandwidth of the spectrum at an offset of Δf, measure the 
power in this bandwidth, and normalize the result to the “carrier power”, called 
“dB with respect to the carrier”.

 In practice, the phase noise reaches a constant floor at large frequency offsets 
(beyond a few megahertz). 

 We call the regions near and far from the carrier the “close-in” and the “far-out”
phase noise, respectively.
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Specification of Phase Noise

At high carrier frequencies, it is difficult to measure the noise power in a 1-Hz 
bandwidth. Suppose a spectrum analyzer measures a noise power of -70 dBm in a 
1-kHz bandwidth at 1-MHz offset. How much is the phase noise at this offset if the 
average oscillator output power is -2 dBm?

Since a 1-kHz bandwidth carries 10 log(1000 Hz) = 30 dB 
higher noise than a 1-Hz bandwidth, we conclude that the 
noise power in 1 Hz is equal to -100 dBm. Normalized to the 
carrier power, this value translates to a phase noise of -98 
dBc/Hz.
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Effect of Phase Noise: Reciprocal Mixing

 Referring to the ideal case depicted above (middle), we observe that the 
desired channel is convolved with the impulse at ωLO, yielding an IF signal at 
ωIF = ωin - ωLO.

 Now, suppose the LO suffers from phase noise and the desired signal is 
accompanied by a large interferer. The convolution of the desired signal and 
the interferer with the noisy LO spectrum results in a broadened
downconverted interferer whose noise skirt corrupts the desired IF signal. 

 This phenomenon is called “reciprocal mixing.”
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Example of Reciprocal Mixing

A GSM receiver must withstand an interferer located three channels away from 
the desired channel and 45 dB higher. Estimate the maximum tolerable phase 
noise of the LO if the corruption due to reciprocal mixing must remain 15 dB 
below the desired signal.
The total noise power introduced by the interferer in the desired channel is equal to

For simplicity, we assume Sn(f) is relatively flat in this 
bandwidth and equal to S0,

which must be at least 15 dB.

If fH - fL = 200 kHz, then
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Received Noise due to Phase Noise of an Unwanted Signal
 In figure below, two users are located in close proximity, with user #1 

transmitting a high-power signal at f1 and user #2 receiving this signal and a 
weak signal at f2. If f1 and f2 are only a few channels apart, the phase noise 
skirt masking the signal received by user #2 greatly corrupts it even before
downconversion.

A student reasons that, if the interferer at f1 above is so large that its phase noise 
corrupts the reception by user #2, then it also heavily compresses the receiver of 
user #2. Is this true?
Not necessarily. An interferer, say, 50 dB above the desired signal produces phase noise 
skirts that are not negligible. For example, the desired signal may have a level of -90 dBm
and the interferer, -40 dBm. Since most receivers’ 1-dB compression point is well above -40 
dBm, user #2’s receiver experiences no desensitization, but the phenomenon above is still 
critical.
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Analysis of Phase Noise: Approach I --- Q of an Oscillator

 Another definition of the Q that is especially well-suited to oscillators is shown 
above, where the circuit is viewed as a feedback system and the phase of the 
open-loop transfer function, is examined at the resonance frequency.

 Oscillators with a high open-loop Q tend to spend less time at frequencies 
other than ω0.
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Noise Shaping in Oscillators(Ⅰ)

In the vicinity of the oscillation frequency, we can approximate H(jω) with the first two terms 
in its Taylor series:

If H(jω0) = -1 and ΔωdH/dω << 1,

The noise spectrum is “shaped” by
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Noise Shaping in Oscillators (Ⅱ)

To determine the shape of |dH/dω|2, we write H(jω) in polar form, and differentiate with 
respect to ω,

Note that (a) in an LC oscillator, the term |d|H|/dω|2 is much less than |dΦ/dω|2 in the vicinity 
of the resonance frequency, and (b) |H| is close to unity for steady oscillations.

Known as “Leeson’s Equation”, this result reaffirms our intuition that the open-loop Q
signifies how much the oscillator rejects the noise.
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Linear Model (Ⅰ)

Compute the total noise injected to the differential output of the cross-coupled 
oscillator when the transistors are in equilibrium. Note that the two-sided spectral 
density of the drain current noise is equal to In2 = 2kTγgm.

 The small-signal (linear) model may ignore some important effects, e.g., the 
noise of the tail current source, or face other difficulties.

The output noise is obtained as
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Linear Model (Ⅱ)

Since In1 and In2 are uncorrelated

Unfortunately, this result contradicts Leeson’s equation. gm is typically quite higher than 
2/Rp and hence R ≠ ∞.
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Conversion of Additive Noise to Phase Noise

 At any point in time, the small phasor can be expressed as the sum of two 
other phasors, one aligned with A and the other perpendicular to it. The former 
modulates the amplitude and the latter, the phase.

The output of the limiter can be written as

We expect that narrowband random additive noise in the vicinity of ω0 results in a phase 
whose spectrum has the same shape as that of the additive noise but translated by ω0 and 
normalized to A/2.
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Conversion of Additive Noise to Phase Noise: 
Analytically Proof of the Previous Conjecture 

We write x(t) = Acos ω0t + n(t). It can be proved that narrowband noise in the vicinity of ω0
can be expressed in terms of its quadrature components

In polar form,

The phase component is equal to:

We are ultimately interested in the spectrum of the RF waveform, x(t), but excluding its AM 
noise.
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Conversion of Additive Noise to Phase Noise: 
Summarization

 Additive noise around ± ω0 having a two-sided spectral density with a peak of 
η results in a phase noise spectrum around ω0 having a normalized one-sided 
spectral density with a peak of 2η/A2
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Cyclostationary Noise

 Since oscillators perform this noise modulation periodically, we say such 
noise sources are “cyclostationary,” i.e., their spectrum varies periodically.

 The total noise current experiences an envelope having twice the oscillation 
frequency and swinging between zero and unity.

 Let us approximate the envelope by a sinusoid, 0.5 cos2ω0t + 0.5. White noise 
multiplied by such an envelope results in white noise with three-eighth the 
spectral density.
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Time-Varying Resistance

 In addition to cyclostationary noise, the time variation of the resistance 
presented by the cross-coupled pair also complicates the analysis. We may 
consider a time average of the resistance as well.

 The resistance seen between the drains of M1 and M2 periodically varies from   
-2/gm to nearly infinity. The corresponding conductance, G, thus swings 
between –gm/2 and nearly zero, exhibiting a certain average, -Gavg.

 If -Gavg is not sufficient to compensate for the loss of the tank, Rp, then the 
oscillation decays. Conversely, if -Gavg is more than enough, then the 
oscillation amplitude grows. In the steady state, therefore, Gavg = 1/Rp.
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Time-Varying Resistance: Effect of Increasing Tail 
Current

What happens to the conductance waveform and Gavg if the tail current is 
increased?

Since Gavg must remain equal to 1/Rp, the waveform changes shape such that it has greater 
excursions but still the same average value. A larger tail current leads to a greater peak
transconductance, -gm2/2, while increasing the time that the transconductance spends near 
zero so that the average is constant. That is, the transistors are at equilibrium for a shorter 
amount of time.
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Phase Noise Computation (Ⅰ)

We now consolidate our formulations of (a) conversion of additive noise to phase noise, (b) 
cyclostationary noise, and (c) time-varying resistance.
 1. We compute the average spectral density of the noise current injected by 

the cross-coupled pair.

 2. To this we add the noise current of Rp.

If a sinusoidal envelope is assumed, the two-sided spectral density amounts to kTγgm×(3/8)

(3/8)kTγgm + 2kT/Rp is obtained.

 3. We multiply the above spectral density by the squared magnitude of the net 
impedance seen between the output nodes.

 4. We divide this result by A2/2 to obtain the one-sided phase noise spectrum 
around ω0.
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Phase Noise Computation (Ⅱ)

 A closer examination of the cross-coupled oscillator reveals that the phase 
noise is in fact independent of the transconductance of the transistors.

The decrease in the width and the increase in the height of the noise envelope pulses cancel 
each other and gm can be simply replaced with 2/Rp in the above equation
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Analysis of Phase Noise: Approach II

Suppose an impulse of current is injected into the oscillating tank at the peak of the output 
voltage producing a voltage step across C1. If

Then the additional energy gives rise to a larger oscillation amplitude

The injection at the peak does not disturb the phase of the oscillation.

 Noise creates only amplitude modulation if injected at the peaks and only 
phase modulation if injected at the zero crossings.
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Computation of Impulse Response Using 
Superposition

Explain how the effect of the current impulse can be determined analytically.

The linearity of the tank allows the use of 
superposition for the injected currents (the inputs) 
and the voltage waveforms (the outputs). The 
output waveform consists of two sinusoidal 
components, one due to the initial condition (the 
oscillation waveform) and another due to the 
impulse. Figure on the right illustrates these 
components for two cases: if injected at t1, the 
impulse leads to a sinusoid exactly in phase with 
the original component, and if injected at t2, the 
impulse produces a sinusoid 90 ° out of phase 
with respect to the original component. In the 
former case, the peaks are unaffected, and in the 
latter, the zero crossings.
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Quantifying Noise Hitting the Output Waveform: 
Impulse Sensitivity Function

We define a linear, time-variant system from each noise source to the output phase. The 
output phase in response to a noise n(t) is given by

 In an oscillator, h(t, τ ) varies periodically: a noise impulse injected at t = t1 or 
integer multiples of the period thereafter produces the same phase change. 

 The impulse response, h(t, τ ), is called the “impulse sensitivity function” (ISF).

Explain how the LC tank has a time-variant behavior even though the inductor and 
the capacitor values remain constant.
The time variance arises from the finite initial condition (e.g., the initial voltage across C1). 
With a zero initial condition, the circuit begins with a zero output, exhibiting a time-invariant 
response to the input.
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Computation of Phase Impulse Response of a Tank

Compute the phase impulse response for the lossless LC tank
The overall output voltage can be expressed as

For t ≥ t1, Vout is equal to the sum of two sinusoids:

The phase of the output is therefore equal to

Interestingly, Φout is not a linear function 
of ΔV in general. But, if ΔV << V0, then
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Convolution in Time-Invariant and Time-Variant
linear, time-invariant system                                     time-variant linear system
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Example of Phase Noise Calculation

Determine the phase noise resulting from a current, in(t), having a white spectrum, 
Si(f), that is injected into the tank.

with half the spectral density of in(t):

We note that (1) the impulse response of this system is simply equal to (C1V0)-1 u(t), and (2) 
the Fourier transform of u(t) is given by (jω)-1 + πδ(ω). 
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Summary of Conversion of Injected Noise to Phase 
Noise around the Carrier

Which frequency components in in(t) in the above example contribute significant 
phase noise?
Since in(t) is multiplied by sin ω0t, noise components around ω0 are translated to the vicinity 
of zero frequency and subsequently appear in equation above. Thus, for a sinusoidal phase 
impulse response (ISF), only noise frequencies near ω0 contribute significant phase noise. 
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Effect of Flicker Noise
Due to its periodic nature, the impulse response of oscillators can be expressed as a Fourier 
series:

In particular, suppose a0 ≠ 0. Then, the corresponding phase noise in response to an 
injected noise in(t) is equal to:

 If the “dc” value of h(t, τ ) is nonzero, then the 
flicker noise of the MOS transistors in the 
oscillator generates phase noise.
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Noise around Higher Harmonics / Cyclostationary
Noise

a1 cos(ω0t + Φ1) translates noise frequencies 
around ω0 to the vicinity of zero and into phase 
noise. By the same token, am cos(mω0t + Φj) 
converts noise components around mω0 in in(t) to 
phase noise.

Cyclostationary noise can be viewed as 
stationary noise, n(t), multiplied by a periodic
envelope, e(t).

The effect of n(t) on phase noise ultimately depends on the product of the cyclostationary
noise envelope and h(t, τ ).
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Noise of Bias Current Source: Tail Noise 
Mechanisms in Cross-Coupled Oscillator

 Oscillators typically employ a bias current source so as to minimize sensitivity 
to the supply voltage and noise therein.



© Vishal Saxena -38-

More on Bias Current Source Noise

 To obtain the phase noise in the output voltage, (1) the current sidebands 
computed in the above example must be multiplied by the impedance of the 
tank at a frequency offset of ±Δω, and (2) the result must be normalized to the 
oscillation amplitude.

 The thermal noise near higher even harmonics of ω0 plays a similar role, 
producing FM sidebands around ω0.

The relative phase noise can be expressed as :

The summation of all of the sideband powers results in the following phase noise 
expression due to the tail current source



© Vishal Saxena -39-

Top Bias Current Source Phase Noise
Suppose IDD contains a noise current in(t), producing a common-mode voltage change of

The output waveform can be expressed as

If Φn(t) << 1 rad, then

We recognize that low-frequency components in in(t) are upconverted to the vicinity of ω0.
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AM/PM Conversion (Ⅰ)

 The amplitude modulation resulting from the bias current noise does translate 
to phase noise in the presence of nonlinear capacitances in the tanks.

 First assume that the voltage dependence of C1 is odd-symmetric around the 
vertical axis. Cavg is independent of the signal amplitude.

 The average tank resonance frequency is thus constant and no phase 
modulation occurs.
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AM/PM Conversion (Ⅱ)

 The above results change if C1 exhibits even-order voltage dependence, e.g., 
C1 = C0(1 + α1V + α2V2). Now, the capacitance changes more sharply for 
negative or positive voltages, yielding an average that depends on the current 
amplitude.

 The tail current introduces phase noise via three distinct mechanisms:  
(1) its flicker noise modulates the output CM level and hence the varactors; 
(2) its flicker noise produces AM at the output and hence phase noise;
(3) its thermal noise at 2ω0 gives rise to phase noise.
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Figures of Merit of VCOs

 Our studies in this chapter point to direct trade-offs among the phase noise, 
power dissipation, and tuning range of VCOs.

A figure of merit (FOM) that encapsulates some of these trade-offs is defined as

Another FOM that additionally represents the trade-offs with the tuning range is

 In general, the phase noise in the above expressions refers to the worst-case 
value, typically at the highest oscillation frequency. 

 Also, note that these FOMs do not account for the load driven by the VCO.
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