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Basic Concepts: Example of Fractional-N Loop

 We expect to obtain other fractional ratios between N and N+1 by 
simply changing the percentage of the time during which the divider 
divides by N or N+1

 In addition to a wider loop bandwidth than that of integer-N
architectures, this approach also reduces the inband “amplification” of 
the reference phase noise because it requires a smaller N.
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Fraction Spurs

 In above example, VCO is modulated at a rate of 0.1MHz and producing 
sidebands at ±0.1MHz×n around 10.1MHz, where n denotes the 
harmonic number. These sidebands are called fractional spurs.

 For a nominal output frequency of (N+α)fREF, the LPF output exhibits a 
repetitive waveform with a period of 1/(αfREF)
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Fraction Spurs: Another Perspective

 The overall feedback signal, xFB(t) can be written as the sum of two 
waveforms, each of which repeat every 10,000 ns. The first waveform 
consists of nine periods of 990 ns and a “dead” time of 1090 ns, while 
the second is simply a pulse of width 1090/2 ns. Since each waveform 
repeats every 10,000 ns, its Fourier series consists of only harmonics 
at 0.1 MHz, 0.2 MHz, etc.

 The sidebands can be considered FM (and AM) components, leading to 
periodic phase modulation:
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Determine the spectrum of xFB1(t) in figure below.

Example: Spectrum of Fractional Spur

Solution:

Let us first find the Fourier transform of one period of the waveform (from t1 to t2). This 
waveform consists of nine 990-ns cycles. If we had an infinite number of such cycles, the 
Fourier transform would contain only harmonics of 1.01 MHz. With nine cycles, the energy is 
spread out of the impulses. If this waveform is repeated every 10  μs, its Fourier transform is 
multiplied by a train of impulses located at integer multiples of 0.1 MHz. The spectrum thus 
appears as shown in figure below. 
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Randomization and Noise Shaping: Modulus Randomization

xFB(t) exhibits a random sequence of 990-ns and 1090-ns periods
xFB(t) now contains random phase modulation:

The modulus breaks the periodicity in the loop behavior, converting the 
deterministic sidebands to noise

The instantaneous frequency of the feedback signal is therefore expressed as:

where b(t) randomly assumes a value of 0 or 1 and has an average value of α
In terms of its mean and another random variable with a zero mean:
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More about Randomization

Plot b(t) and q(t) as a function of time.

The sequence b(t) contains an occasional square pulse so that the average is α. Subtracting 
α from b(t) yields the noise waveform, q(t). 

If q(t) << N + α, we have

The feedback waveform arriving at the PFD

Phase noise given by:
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More Examples of Phase Noise

Plot the previous formulated phase noise a function of time.
With the aid of the wave form obtained last Example for q(t), we arrive at the random 
triangular waveform shown below:

Determine the spectrum of ϕn,div(t).

The time integral of a function leads to a factor of 1/s in the frequency domain. Thus, the 
power spectral density of q(t) must be multiplied by [2π fout / (N + α)2 /ω] 2,

where Sq(f) is the spectrum of the quantization noise, q(t). Note that this noise can be 
“referred” to the other PFD input—as if it existed in the reference waveform rather than the 
divider output.
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Synthesizer Output Phase Noise within the Loop 
Bandwidth

Alternatively, since fout = (N+α)fREF

Compute Sq(f) if b(t) consists of square pulses of width Tb that randomly repeat at 
a rate of 1/Tb

We first determine the spectrum of b(t), Sb(f). As shown in Appendix I, Sb(f) is given by:

where the second term signifies the dc content. Thus,

revealing a main “lobe” between f = 0 and f = 1/Tb
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Basic Noise Shaping: Randomization Resulting in High-Pass 
Phase Noise Spectrum

 We wish to generate a random binary sequence, b(t), that switches the 
divider modulus between N and N+1 such that (1) the average value of 
the sequence is α, and (2) the noise of the sequence exhibits a high-
pass spectrum.
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Negative Feedback System as a High-Pass System

 A negative feedback loop containing an integrator acts as a high-pass 
system on the noise injected “near” the output. If Q varies slowly with 
time, then the loop gain is large, making W a close replica of Q and 
hence Y small.

If H(s) is an ideal integrator
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Example of a Discrete-Time Version of Previous System (Ⅰ)

Solution:

Construct a discrete-time version of the system shown in the previous slide if H
must operate as an integrator

Discrete-time integration can be realized by delaying the signal and adding the result to 
itself. We observe that if, for example, A = 1, then the output continues to rise in unity 
increments in each clock cycle. Since the z-transform of a single-clock delay is equal to z-1, 
we draw the integrator as shown below and express the integrator transfer function as
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Example of a Discrete-Time Version of Previous System (Ⅱ)

Thus, the discrete-time version of the system appears as shown above. Here, if Q = 0, then

i.e., the output simply tracks the input with a delay. Also, if X = 0, then

This is a high-pass response (that of a differentiator) because subtracting the delayed 
version of a signal from the signal yields a small output if the signal does not change 
significantly during the delay.

Construct a discrete-time version of the system shown in the previous slide if H
must operate as an integrator
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Addition of a Signal and Its Delayed Version for High and 
Low Clock Frequencies

 If the clock frequency increases, a(t) finds less time to change, and a1
and a2 exhibit a small difference.

High clock frequencies             low clock frequencies
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Example of Feedback System with an m-bit Input

Construct the system in the previous example in the digital domain with a 
precision (word length) of m bits.

Shown here, the system incorporates an input adder (#1) (in fact a subtractor) and 

an integrator (“accumulator”) consisting of a digital adder (#2) and a register (delay element). 
The first adder receives two m-bit inputs, producing an (m + 1)-bit output. Similarly, the 
integrator produces an (m + 2)-bit output. Since the feedback path from Y drops the two 
least significant bits of the integrator output, we say it introduces quantization noise, which 
is modeled by an additive term, Q.

In analogy with the continuous-time version, we note that the high integrator gain forces Y
to be equal to X at low frequencies, i.e., the average of Y is equal to the average of X.



© Vishal Saxena -17-

Σ-Δ Modulator

 The quantization from m+2 bits to 1 bit introduces significant noise, 
but the feedback loop shapes this noise in proportion to 1-z-1. The 
higher integrator gain ensures that the average of the output is equal 
to X.

 The choice of m is given by the accuracy with which the synthesizer 
output frequency must be defined.
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Noise Shaping of Modulator

 The noise shaping function begins from zero at f = 0 and climbs to 4 at 
f = (2TCK)-1 (half the clock frequency).

 A higher clock rate expands the function horizontally, thus reducing 
the noise density at low frequencies.
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Shape of Sy(f)

 Since the PLL bandwidth is much smaller than fREF, we can consider 
Sq(f) relatively flat for the frequency range of interest. We hereafter 
assume that the shape of Sy(f) is approximately the same as that of the 
noise-shaping function.



© Vishal Saxena -20-

Summary: Fractional-N Synthesizer Developed Thus Far

 Shown above is a basic fractional-N loop using a Σ-Δ modulator to 
randomize the divide ratio. 

 Clocked by the feedback signal, the Σ-Δ modulator toggles the divide 
ratio between N and N+1 so that the average is equal to N+α
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Problem of Tones

 The output spectrum of Σ-Δ modulators contains the shaped noise, but 
also discrete tones. If lying at low frequencies, such tones are not 
removed by the PLL, thereby corrupting the synthesizer output.

 To suppress these tones, the periodicity of the system must be broken. 
If the LSB of X randomly toggles between 0 and 1, then the pulses in 
the output waveform occur randomly, yielding a spectrum with 
relatively small tones.
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Seeking a System with a Higher-Order Noise Shaping

The noise shaping function shown above does not adequately suppress the in-band noise. 
This can be seen by noting that, for f << (πTCK)-1, 

We therefore seek a system that exhibits a sharper roll-off.
The following development will call for a “non-delaying integrator”. 
The transfer function is given by

Replace the 1-bit quantizer with a Σ-Δ modulator 
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To Determine the Noise Shaping Function

Modifying the first integrator to a non-delaying topology:
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Comparison: Noise Shaping in First- and Second-Order 
Modulators

 The noise shaping in 
second-order modulator 
remains lower than that of 
the first-order modulator for 
frequencies up to (6TCK)-1 

We have
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Cascaded Modulators

 Y2 is a relatively accurate replica of U. Y2 is combined with Y1, yielding 
Yout as a more accurate representation of X. The system is called a “1-1 
cascade”.
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Residual Quantization Noise

we have 

and



© Vishal Saxena -27-

Example of Signal Combining Operation

Solution:

Construct a circuit that performs the combining operation shown previously.

For 1-bit streams, multiplication by z -1 is realized by a flipflop. The circuit thus appears as 
shown below:
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Problem of Out-of-Band Noise
The transfer function from the quantization noise to the frequency noise

the phase noise

The spectrum of the phase noise is thus obtained as

Experiencing the low-pass transfer function
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Summary: Effects of Phase Noise at the Output of a 
Fractional-N Loop
 For small value of f, the product, Sout(f), begins from zero and rises to 

some extent. 
 For larger values of f, the f2 behavior of the noise shaping function 

cancels the roll-off of the PLL, leading to a relatively constant plateau.
 At values of f approaching 1/(2TCK)  =  fREF /2, the product is dominated 

by the PLL roll-off. If comparable with the shaped VCO phase noise, 
this peaking proves troublesome.
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Effect of Charge Pump Mismatch

the total charge delivered to the loop filter is equal to

Now, let us reverse the polarity of the input phase difference.

(a) PFD/CP with current mismatches. (b) effect for Up ahead of Down. (c) effect for 
Up behind Down. (d) resulting characteristic
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Example of Charge Pump Mismatch in Integer-N 
Synthesizers

Does the above nonlinearity manifest itself in integer-N synthesizers?

No, it does not. Recall from Chapter 9 that, in the presence of a mismatch between I1 and I2, 
an integer-N PLL locks with a static phase offset, ΔT0, such that the net charge injected into 
the loop filter is zero. Now suppose the divider output phase experiences a small positive 
instantaneous jump (e.g., due to the VCO phase noise). 

The net charge therefore becomes proportionally positive. Similarly, for a small negative 
instantaneous phase jump, the net charge becomes proportionally negative. The key point is 
that, in both cases, the charge is proportional to I1, leading to the characteristic shown in (d). 
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What is the Effect of the Above Nonlinearity on a ΣΔ
Fractional-N Synthesizer? 

Decompose the characteristic shown in previous example into two components:

 The multiplication of ΔTin by itself is a mixing effect and translates to 
the convolution.

 Charge pump nonlinearity translates the ΣΔ modulator’s high-
frequency quantization noise to in-band noise, thus modulating VCO.

We roughly approximate the error by a parabola, αΔT2in – b, and write Qtot ≈ IavgΔTin+ αΔT2in-
b 
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Approach to Alleviating the Charge Pump Mismatch

 Split the PFD reset pulse to create a static phase error and avoid slope 
change.

 For a sufficiently large TD and hence ΔT0, phase fluctuations simply 
modulate  the width of the negative current pulse in Inet, leading to a 
characteristic with a slope of I2. Unfortunately, this technique also 
introduces significant ripple on the control voltage.

The PLL must lock with a zero net charge

The static phase offset is
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Another Approach Using Sampling Circuit

 A sampling circuit interposed between the charge pump and the loop 
filter can “mask” the ripple, ensuring that the oscillator control line 
sees only the settled voltage produced by the CP.

 In other words, a deliberate current offset or Up/Down misalignment 
along with a sampling circuit removes the nonlinearity resulting from 
the charge pump and yields a small ripple
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Quantization Noise Reduction Techniques: DAC 
Feedforward

 Here, W is the shaped noise whereas in cascaded modulators, we 
compute Q = Y-A, which is unshaped.

quantization error:
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Basic DAC Feedforward Cancellation

 In the absence of analog and timing mismatches, each ΣΔ modulator 
output pulse traveling through the divider, the PFD, and the charge 
pump is met by another pulse produced by the DAC, facing perfect
cancellation. 
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Issues in Previous System and Modifications(Ⅰ)
 An integrator must be interposed between the subtractor and the DAC 

due to different form of quantization noise arriving at the loop filter and 
DAC output. 

 Accuracy requirement: it is necessary to “requantize” the 17-bit 
representation by another ΣΔ modulator, thereby generating a, say, 6-
bit representation whose quantization noise is shaped.
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Issues in Previous System and Modifications(Ⅱ)

 The Up and Down pulses activate the CP for only a fraction of the 
reference period, producing a current pulse of constant height each 
time. The DAC, on the other hand, generates current pulses of 
constant width.

 The sampling loop filter is typically used to mask the ripple.

What is the effect of the mismatch between the charge pump current and  
the DAC current in system above?

quantization error:

The unequal areas of the current pulses generated by the CP and the DAC lead to 
incomplete cancellation of the quantization noise. For example, a 5% mismatch limits the 
noise reduction to roughly 26 dB.
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DAC Gain Error

 Since both the charge pump current and the DAC current are defined 
by means of current mirrors, mismatches between these mirrors lead 
to incomplete cancellation of the quantization noise. 

 The quantization noise 
applied to the DAC are 
convolved and folded 
to low frequencies, 
raising the in-band 
phase noise.
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Fractional Divider

 Another approach to reducing the ΣΔ modulator quantization noise 
employs “fractional” dividers, i.e., circuits that can divide the input 
frequency by noninteger values such as 1.5 or 2.5

 Even with a half-rate clock, Dout track Din. In other words, for a given 
clock rate, the input data to a DET flipflop can be twice as fast as that 
applied to a single-edge-triggered counterpart.
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CML Implementation and Use in Divide-by-1.5 
Circuit

 Replacing the flipflops of ÷3 circuit with the DET circuit. The circuit 
produces one output period for every 1.5 input periods. 

CML implementation
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Reference Doubling

 If the reference frequency can be doubled by means of an on-chip 
circuit preceding the PLL, then the phase noise due to the ΣΔ
modulator quantization can be reduced by 6 dB.

The input is delayed and XORed with itself, producing an output pulse each time Vin(t) and 
Vin (t-ΔT) are unequal.
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Example of Fourier Series of Doubler Output
If we consider Vout(t) as the sum of the two half-rate waveforms, determine the 
Fourier series of Vout(t).

The Fourier series of V1(t) can be written as

where ω0 = 2π/(2T1). The second waveform, V2(t), is obtained by shifting V1 by T1. Thus, the 
first harmonic is shifted by ω0T1 = π, the second by 2ω0T1 = 2π, etc. It follows that

Adding V1(t) and V2(t), we note that all odd harmonics of ω0 vanish, yielding a waveform 
with a fundamental frequency of 2ω0
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Doubler Output with Input Duty Cycle Distortion

 If  the input duty cycle deviates from 50%, the odd harmonics are not 
completely canceled, appearing as sidebands around the main 
component at 1/T1. Since the PLL bandwidth is chosen about one-tenth 
1/T1, the sidebands are attenuated to some extent.
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Multi-Phase Frequency Division: an Overview

It is possible to create a fractional divide ratio by means of a multi-phase VCO and a 
multiplexer. Suppose a VCO generates M output phases with a minimum spacing of 2π/M, 
and the MUX selects one phase each time, producing an output given by

where k is an integer. Now, let us assume that k varies linearly with time, sequencing 
through 0, 1, · · ·, M -1, M, M + 1, · · · . Thus, k = βt, where β denotes the rate of change of k, 
and hence

The divide ratio is therefore equal to 1 - (β/ωc)(2π/M)
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An Example of Multi-Phase Frequency Division

 This technique affords a frequency divider having a modulus of 1 and 
modulus of 1.25. Since the divide ratio can be adjusted in a step of 0.25, 
the quantization noise falls by 20 log4 = 12 dB
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Issues in Multi-Phase Fractional Division: Problem 
of Phase Selection Timing Margin

 The MUX select command 
(which determines the phase 
added to the carrier each time) 
is difficult to generate.

 The edges of the select waveforms have a small margin with respect to 
the input edges. Moreover, if the divide ratio must switch from 1.25 to 1, 
a different set of select waveforms must be applied, complicating the 
generation and routing of the select logic.
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Issues in Multi-Phase Fractional Division: Phase 
Mismatches

 The quadrature LO phases 
and the paths within the MUX 
suffer from mismatches, 
thereby displacing the output 
transitions from their ideal 
points in time.

 The spectrum contains a large 
component at 4/(5Tin) and “sidebands”
at other integer multiples of 1/(5Tin)

 It is possible to randomize the 
selection of the phases so as to 
convert the sidebands to noise.
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Appendix I: Spectrum of Quantization Noise
In general, if a pulse p(t) is randomly repeated every Tb seconds,
the resulting spectrum is given by

The variance of a random variable x is obtained as

Fourier transform of p(t) is equal to

Probability density function of binary 
data with an average value of α
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