### **Behavioral Modeling using Verilog-A**

Dr. Vishal Saxena



# Verilog-A

- VerilogA is the standard behavioral modeling language in Cadence Spectre environment
- Allows to simulate complex systems without transistor-level implementation
- Some of the functionality is similar to Matlab Simulink but more circuit oriented
- Can interchange VerilogA, Transistor-level and parasitic extracted circuit views for system-level simulation using the Hierarchy editor
  - Powerful method for complex design verification
- Language construct is similar to digital Verilog RTL, but not quite the same
  - Easy to pick up, but mastery comes with experience
  - Can be used to model novel devices not covered by bsim

### Verilog-AMS

- Verilog-AMS is an extension of Verilog-A to include digital Verilog cosimulation functionality
- □ Works with the **ams** simulator instead of spectre
- □ Need to clearly define interfaces between analog and digital circuits
- **bmslib** and ahdlLib libs have *verilogams* views along with *veriloga*
- Don't worry about it for now....

### **Using Behavioral Cells**



### $\Box$ *bmslib* $\rightarrow$ *dff\_sr cell* for a DFF with reset

### Setting cell parameters



□ Select: *CDF parameter of View*  $\rightarrow$  *veriloga* □ Connect the **S**et pin to GND to disable it, **R**eset is asserted when high.

### Setting cell parameters

![](_page_5_Figure_1.jpeg)

- Set desired model parameters such as voltages and delays
- **Preferably use variables controlled from the ADE-L window (e.g.**  $t_{pcq}$  here)

# Logic Cells

![](_page_6_Figure_1.jpeg)

- $\Box \quad Make a local copy of the$ *bmslib* $<math>\rightarrow$  *and2 cell*
- Delete the *cmos\_sch* view as it interferes with the simulation
- Could also use cells from the ahdlLib library

### **Convergence Hints**

- Since verilog-A models are idealized models they can cause convergence problems
- In a transient sim use the skipdc option if DC operating point convergence is not achieved by the simulator

| Library Manager: WorkArea: /hom       | Transient Options X                        |
|---------------------------------------|--------------------------------------------|
| Help                                  | Time Step Algorithm State File Output Misc |
| Files                                 |                                            |
| nvironment (1) - PLL_Design sim_DI    | dc bede dev all                            |
| outputs Simulation Results Tools Help |                                            |
| tre Analysia tran do oo               | skiput ves 0 waveless                      |
| na Analysis Stian Cuc Cac             |                                            |
|                                       | readic                                     |
| tr Opac Opstb Opnoise                 | CONVERGENCE PARAMETERS                     |
| 🔾 psp 🔾 qpss 🔾 qpac                   |                                            |
| 🔾 qpxf 🔾 qpsp                         | readns                                     |
| uti Transient Analysi                 | cmin                                       |
| Stop Time                             | INTEGRATION METHOD PARAMETERS              |
| d Accuracy Defaults (errpreset)       | method 🔄 euler 🔄 trap 🔄 traponly           |
| B conservative moderate liber         | 🗌 gear2 🔲 gear2only 🛄 trapgear2            |
| Transient Noise                       | OK Cancel Defaults Apply Help              |
| ot<br>Fl Enabled 🗹                    | Options                                    |
| OK Cancel De                          | afaults Apply Help                         |

#### © Vishal Saxena

### Convergence Hints contd.

- □ Use initial conditions to help with convergence
  - ADE L → Simulation → Convergence Aids → Initial Condition
- □ Can relax tolerances in the simulator options
  - $ADE L \rightarrow Simulation \rightarrow Options \rightarrow Analog$
- □ Use common-sense when using idealized elements and models...
  - Turn on Spectre debug mode to help fix the problem
  - Look into the convergence related help in the Spectre references (listed later)

## **Dff Code Synopsis**

![](_page_9_Figure_1.jpeg)

### Dff Code Synopsis contd.

![](_page_10_Figure_1.jpeg)

## How to get started using Verilog-A modeling

- □ Start with the available behavioral blocks with Spectre
- Don't create a fresh model from scratch unless you really need it
  - Modify the existing ones
- Don't get bogged down with the code complexity of these professionally coded models
  - Your custom behavioral codes can be really simple
  - Once you start using verilogA, it will get easier.....
- Great skill to have for an analog designer!
  - All circuit design these days is at system level

### **References and Online Resources**

- □ Spectre reference libraries with behavioral cells
  - bmslib and ahdlLib
- D Must read: Cadence Whitepaper, "Creating Analog Behavioral Models"
  - http://lumerink.com/courses/ECE614/Handouts/CDN\_Creating\_Analog\_Behavioral\_ Models.pdf
- Designers Guide Community Site
  - http://www.designers-guide.org/
- Books
  - <u>The Designer's Guide to Verilog-AMS</u> by Kenneth S. Kundert & Olaf Zinke, 2004.
  - The Designer's Guide to SPICE and Spectre by Kenneth S. Kundert, 1995.
- AMS CAD Wiki
  - http://lumerink.com/cadwiki/doku.php

# Happy Circuit Modeling with VerilogA!

# References

- 1. Ken Kundert, "The Designer's Guide to Spice & Spectre," Boston, Kluwer, 1995.
- 2. Ken Kundert, "The Designer's Guide to Verilog-AMS, 2004.
- 3. Cadence Whitepaper : <u>Creating Analog Behavioral Models</u>
- 4. Designers Guide Community. [Online] <u>http://www.designers-guide.org/</u>
- 5. Virtuoso Spectre DesignerReference [Online]
  6. http://lumerink.com/courses/ECE614/Handouts/Spectre Designer Reference.pdf
- 7. Virtuoso Spectre Circuit Simulator RF Analysis User Guide [Online]
- 8. <u>http://www.seas.gwu.edu/~vlsi/ece218/SPRING/reference/manual\_cadence\_spectreRF.pdf</u>
- Information on linking Matlab and Spectre in Linux environment. [Online] <u>http://www.lumerink.com/courses/ECE697A/docs/Cadence+Spectre+Matlab+Toolbox.pdf</u>
- 1. Verilog-AMS Language Reference Manual. [Online] <u>http://www.eda.org/verilog-ams/htmlpages/lit.html</u>