Delta-Sigma Analog-to-Digital Converters

Oversampling Data Converters Basics

Vishal Saxena

Oversampling and Noise-Shaping

Oversampling

- Oversampling ratio (*OSR*)
- □ Conversion bandwidth: $f_{\rm B} = f_{\rm s}/2$ · OSR
- $\Box \quad SQNR = 6.02 \cdot N + 1.76 + 10 \cdot \log_{10}(OSR)$
- □ 0.5 bits increase in resolution per doubling in OSR

Oversampling

File: oversampling1.m

Oversampling

File: oversampling1.m

Oversampling with Feedback

- □ Can we use feedback with high loop-gain $(A \cdot k_q)$ to reduce the error e=|u-v|?
- □ Since quantizer output can not be equal to the input

$$A \cdot k_q \to \infty \Longrightarrow e = |u - v| \to \infty$$

□ The loop will be unstable as the error gets unbounded

Oversampling with Feedback

- Use large loop-gain in the signal band and small loop-gain at higher frequencies
- $\Box \quad \text{At low frequencies } e = |u v| \to 0$
- □ At high frequencies, low loop-gain stabilizes the loop
- $\Box \quad L(z) \text{ is the loop-filter}$
- □ This feedback arrangement is called a (noise) modulator

First-order Modulator

- Differencing (Δ) followed by an accumulator (Σ)
 - ΔΣ modulator
- $\Box \quad \text{At low frequencies } e = |u v| \to 0$

First-order Noise Shaping

Linearized model for the modulator

$$V(z) = z^{-1} U(z) + (1 - z^{-1}) E(z)$$

STF NTF

- Noise transfer function (NTF)
 - (1-z⁻¹) : first-order differentiator
 - High-pass shaping of quantization noise
- Gignal transfer function (STF)
 - Unit delay

First-order ΔΣ Modulator

File: First_Order_DSM.m

First-order $\Delta\Sigma$ Modulator SQNR

In-band quantization noise (IBN)

$$\frac{\Delta^2}{12} \cdot \frac{\pi^2}{3} \cdot OSR^{-3}$$

- $\Box \quad SQNR = 6.02 \cdot N 3.4 + 30 \cdot \log_{10}(OSR)$
- 1.5 bits increase in resolution per doubling in OSR
- Out-of-band noise is filtered out using a digital filter

$$IBN = \int_{0}^{\frac{\pi}{OSR}} S_{\nu}(e^{j\omega}) d\omega$$
$$= \frac{\Delta^2}{12} \int_{0}^{\frac{\pi}{OSR}} |NTF(e^{j\omega})| \cdot d\omega$$
$$= \frac{\Delta^2}{12} \int_{0}^{\frac{\pi}{OSR}} 4\sin^2(\omega/2) \cdot d\omega$$
$$\approx \frac{\Delta^2}{12} \int_{0}^{\frac{\pi}{OSR}} \omega^2 \cdot d\omega$$
in
$$= \frac{\Delta^2}{12} \cdot \frac{\omega^3}{3} \Big|_{0}^{\frac{\pi}{OSR}}$$
$$= \frac{\Delta^2 \pi^2}{36 \cdot OSR^3}$$

Delta-Sigma ($\Delta\Sigma$) ADC

- □ Use oversampling ($f_s = 2 \cdot OSR \cdot BW$) to shape the quantization noise out of the signal band
- □ Use low-resolution ADC and DAC to higher much higher resolution
- Digitally filter out the out-of band shaped (modulated) noise
- □ Trades-off SQNR with oversampling ratio (OSR)

Second-Order Noise Shaping

Linearized model for the modulator

$$V(z) = z^{-1}U(z) + (1 - z^{-1})^{2}E(z)$$

- Second-order noise-shaping In-band quantization noise (IBN): $\frac{\Delta^2}{12} \cdot \frac{\pi^4}{5} \cdot OSR^{-5}$
 - 2.5 bits increase in resolution per doubling in OSR
- Can be extended to higher orders

Second-order $\Delta\Sigma$ Modulator

File: Second_Order_DSM.m

Second-order $\Delta\Sigma$ Modulator

D NTF(z) = $(1-z^{-1})^2$

- Two zeroes at DC
- Out-of-Band Gain (OBG) (i.e gain at $\omega \approx \pi$) = 4

2nd order DSM

© Vishal Saxena

0.9

2nd order DSM: contd.

Comparison: 1st and 2nd order modulator waveforms

- □ NTF(z) = $(1-z^{-1})$
- \bigcirc OBG = 2
- $\square Max LSB jump = 1$

- NTF(z) = $(1-z^{-1})^2$ • OBG = 4
 - $\square Max LSB jump = 3$

Higher-Order $\Delta\Sigma$ Modulators

Higher-Order NTFs

- Higher order noise shaping
 - Reduced in-band noise, higher SQNR
- $\Box \quad \text{For } NTF = (1-z^{-1})^{-N}, \text{ in-band noise (IBN): } \frac{\Delta^2}{12} \cdot \frac{\pi^{2N}}{(2N+1)} \cdot OSR^{-(2N+1)}$
 - Ideally (N+1/2) bits increase in resolution per doubling in OSR

Higher-Order NTFs

NTF gain increases at high frequencies (around ω≈π)
Can we go on increasing the order?

Third-order $\Delta\Sigma$ Modulator Example

- \Box *NTF*(*z*) = $(1-z^{-1})^{3}$
- \Box OBG = 8, Full-scale input.
- □ Unstable after few samples (look at quantize input (*y*) blowing up!).
 - Signature for ΔΣ instability
 - Worst case for a single-bit quantizer.

File: Third_Order_DSM.m

Third-order $\Delta\Sigma$ Modulator Example

- □ Stable for 50% of full-Scale amplitude
- □ Signal dependent stability
 - Need to develop intuition for modulator stability
 - Reference: Stability theory from the Yellow Bible of delta-sigma

File: Third_Order_DSM.m

Systematic NTF Design

- □ NTFs of the form $(1-z^{-1})^N$ have stability issues
 - The OBG (2^N) are too high
- □ A larger OBG causes more wiggling at the quantizer input
 - This saturates the quantizer for even smaller inputs
 - Irrecoverable quantizer saturation causes loop instability
- For high-OBG the maximum stable (input) amplitude (MSA) is small
- □ The stability is worse for low quantizer resolutions
- Thus we need to reduce OBG while maintaining high inband noise shaping

Systematic NTF Design Procedure

- Introduce poles into the NTF
- $\square \quad NTF(z) = \frac{(1 z^{-1})^{N}}{D(z)}$
- NTF realizability criterion
 - No delay-free loops in the modulator
 - First sample of the NTF impulse response (i.e. h[0])=1
 - \Rightarrow NTF(∞)=1
 - $\Rightarrow D(z=\infty)=1$
- Commonly used pole positions: Butterworth, Inverse Chebyshev and maximally flat poles (maxflat)

NTF Response with Poles

Select appropriate OBG for the NTF to assure stability
Trade-off between stability and increased in-band noise

MSA vs SQNR for a given order and quantizer resolution

Systematic NTF Design Example

Specifications

SQNR > 120 dB

• A signal bandwidth which results in an OSR = 64

- Study optimal clock rate for the given process and quantizer design.
- Designer's Choice
 - Order = 3
 - Quantizer levels (nLev) = 16
 - Butterworth high-pass response for the NTF

□ Use MATLAB for finding coefficients of the HPF response.

- $[b,a] = butter(order, \omega_{3dB}, 'high')$
- The cutoff frequency ω_{3dB} specifies the transfer function.

□ Start with cutoff frequency $ω_{3dB} = π/8$, for the butterworth HPF H(z).
□ Derive a realizable NTF using NTF(z)=H(z)/b₀

- Map the NTF response to a loop-filter architecture (details later)
- Simulate the modulator for all possible amplitudes and input tone frequencies.
- □ Compute the peak SQNR and MSA.
 - simulateDSM function in the toolbox.
 - Can use Risbo's method shown later

Peak SNR = 107 dB
MSA = 0.9

© Vishal Saxena

- If SNR is not enough, repeat the entire procedure with a higher cutoff frequency for the Butterworth HPF
 - IBN ↓, SQNR ↑
 - OBG \uparrow and MSA \downarrow
- If SNR is too high, repeat the entire procedure with a lower cutoff frequency for the Butterworth HPF
 - IBN \uparrow , SQNR \downarrow
 - OBG \downarrow and MSA \uparrow

□ $ω_{3dB} = π/4$. □ Peak SNR = 119 dB, OBG = 2.25, MSA = 0.8

 $\Box \qquad \omega_{3dB}=2\pi/7.$

- □ Peak SNR = 121 dB, OBG = 2.54, MSA = 0.8.
 - Design closed !

- An advanced version of this iterative process is implemented as the function synthesizeNTF in the deltasigma Toolbox.
 - Several 'opt' params for NTF zero (and pole) optimization
 - Use synthesizeChebyshevNTF for low OSR and low OBG designs.

NTF-Zero Optimization

- □ Spread zeros in the signal band to minimize in-band noise
 - Complex zeros on the unit circle
 - 8dB increase in SQNR for 3rd order modulator
- Bandwidth normalized NTF-zero locations obtained by toolbox function ds_optzeros(order, 1)
- Already implemented in synthesizeNTF function for opt=1

© Vishal Saxena

2nd order DSM: NTF Zero Optimization

$$NTF(z) = (1 - e^{j0.06}z^{-1})(1 - e^{-j0.06}z^{-1})$$

File: Second_Order_DSM_Zero_Opt.m Set variable opt=1.
2nd order DSM: NTF Zero Optimization contd.

•5.5 dB increase in SQNR.

NTF pole (if any) optimization to be discussed later.

© Vishal Saxena

Estimating MSA (Maximum Stable Amplitude)

- □ MSA is found through extensive simulation
- Simulate for input sinusoids of varying amplitudes for all possible signal frequencies in the signal band.
 - For every input amplitude compute in-band SNR.
 - Beyond the MSA, the NTF poles move out of the unit circle.
 - Noise shaping is disrupted and the in-band SNR drops.
 - At this point the quantizer input (y[n]) blows up.
- simulateSNR function in the toolbox does exactly the same
- □ Time consuming and often impractical for iterative design

Estimating MSA using Risbo's Method

- □ Use a slow ramp input from 0 to FS value.
 - Plot log₁₀|y[n]|. Observe where this plot blows up.
 - Take 90% of the input amplitude where log₁₀|y[n]| blows up as a conservative estimate for MSA.
 - Estimated MSA is close to that predicted by the sinewave input method.
- Much quicker than the sinewave technique (simulateSNR function)

Estimating MSA using Risbo's Method

File: MSA_Risbo_Method.m

Simulation with input with MSA

Simulated SNR with input with MSA

Simulation with input with 1.2*MSA

Simulation with input with 1.2*MSA

Area above and below the 0-dB axis are equal.

Butterworth NTF.

Area above and below the 0-dB axis are equal.

Inverse Chebyshev NTF.

Area above and below the 0-dB axis are equal.

Better in-band performance results in worse out-of-band performance.

Complex NTF zeros result in better in-band performance for the same OBG.

Higher-order NTF results in better in-band performance for the same OBG.

Loop Filter Architectures

Loop-Filter Architectures

Several loop-filter discrete-time architectures possible
 Toolbox function realizeNTF maps the synthesized NTF to loop-filter co-efficients

[a,g,b,c] = realizeNTF(H, form);

- Dynamic Range Scaling (DRS) performed to scale loopfilter states to a bounded value
 - Scaling performed using ABCD matrix representation of the loopfilter
 - See any introductory text on Linear Systems

```
ABCD = stuffABCD(a,g,b,c,form);
[ABCDs umax] = scaleABCD(ABCD, nLev, f0, xLim);
[a,g,b,c] = mapABCD(ABCDs, form);
```

CIFB (Cascade of Integrators with Distributed Feedback)

- □ Cascade of delaying integrators:
 - Feedback coefficients a's realize the zeros of L₁ and thus the NTF and STF poles.
 - Feed-in coefficients b's determine zeros of L₀ and thus the STF zeros.
 - State scaling coefficients c's are used for dynamic range scaling.

CRFB (Cascade of Resonators with Distributed Feedback)

- Combine a non-delaying and a delaying integrator with local feedback around them, to form a stable resonator
 - Local feedback coefficients g's realize the complex zeros in the NTF.
 - Implements NTF with complex $ze_{z_i} = e^{\pm j\sqrt{g_1}}$
- For odd-order, use an integrator in the front to avoid noise coupling due to g

CIFF (Cascade of Integrators with Feed-Forward Summation)

- Feedforward summation of states
- $\Box \quad \text{For } b_1 = b_{N+1} = 1 \text{ and } b_2 \text{ to } b_N = 0, \text{ STF} = 1$
 - Loop-filter only processes quantization noise, low power and distortion
- Feedforward loop-filters typically result in lower-power implementation

CRFF (Cascade of Resonators with Feed-Forward Summation)

- □ Use resonators with feedforward summation
 - Implements NTF with complex zeros
- For odd-order, use an integrator in the front to avoid noise coupling due to g

CIFB Example 1

CIFB, order = 4All NTF zeros at z=1, i.e. opt =0. OBG = 3, OSR = 16, nLev = 15. Only single input coupling is used b(2:end) = 0Maxflat poles in STF $\mathbf{a} = [0.16 \ 0.86 \ 1.9 \ 2.1]$ $\mathbf{b} = [0.16\ 0\ 0\ 0]$ **c** = [1 1 1 1] $g = [0 \ 0]$

File: CIFB_4th_Order_1.m

CIFB Example 1 contd. : NTF and STF

States

File: CIFB_4th_Order_1.m

Spectrum

File: CIFB_4th_Order_1.m

Topologies

- □ CRFB with single feed-in
 - CRFB_4th_Order_1.m
- Low-distortion CRFB topology
 - CRFB_4th_Order_2.m
- □ CIFB with single feed-in and optimized NTF zeros
 - CIFB_Opt_4th_Order_1.m
- Low-distortion CIFB topology with optimized NTF zeros
 - CIFB_Opt_4th_Order_2.m

CIFF Example 1

CIFF Example 1 contd. : NTF and STF

States

File: CIFF_4th_Order_1.m

Spectrum

CIFF Example 2

CIFF, order = 4All NTF zeros at z=1, i.e. opt =0. OBG = 3, OSR = 16, nLev = 15. Only single input feed-in used b(2:end)=0 $\mathbf{a} = [2.1 \ 1.9 \ 0.86 \ 0.16]$ $\mathbf{b} = [1 \ 0 \ 0 \ 0 \ 0]$ **c** = [1 1 1 1] **g** = [0 0]

CIFF Example 2 contd. : NTF and STF

□ Notice the significant STF peaking !

File: CIFF_4th_Order_2.m

States

- Last integrator output has significant signal content
 - Use dynamic range scaling.
 - Last integrator will burn more power in this case.

Spectrum

File: CIFF_4th_Order_2.m

Topologies

- Low-distortion CRFF topology
 - CRFF_4th_Order_1.m
- □ CRFF with single feed-in
 - CRFF_4th_Order_2.m
- Low-distortion CIFF topology with optimized NTF zeros
 - CIFF_Opt_4th_Order_1.m
- CIFF with single feed-in and optimized NTF zeros
 - CIFF_Opt_4th_Order_2.m
- □ STF peaking in FF topologies with single feed-in is an issue
 - CT FF DSM will have STF peaking as full-feedforward branch can't be used.
 - The feed-in coefficients b's can be strategically used to realize CIFF/CRFB topology with better out-of-band STF attenuation.

$\Delta\Sigma$ Modulator Architectures

Cascade/ MASH architecture:

•Eg. Two first order modulators are used to implement second order modulator.

•Stability concerns are relaxed but mismatch in the two forward paths should be properly monitored.

$\Delta\Sigma$ Modulator Architectures

Feedforward modulators

•Most popular architecture.

- •Input signal is summed at Nth stage integrator output.
- •Summation block may be required at higher order modulators.
- •Multibit quantizer is necessary.
Key Terminologies :

- □ SQNR Signal to quantization noise ratio
 - Thermal/electrical noise are not included.
- □ SNR Signal to noise ratio
 - Distortion is not included.
- SDNR Signal to noise and distortion ratio
 - All noise sources are included.
- ENOB Effective number of bits (resolution)
 - This is very important than actual number of output bits
- Dynamic Range (DR)
 - Measured with input of the modulator shorted.
- Harmonic Distortion
 - THD is usually total harmonic distortion. Or Third??
- Spur Free Dynamic Range (SFDR)
 - Very key parameter in communication systems

Frequency Domain Measurements

Spurious (tone) Free Dynamic Range (SFDR)

References

Data Conversion Fundamentals

- A.1 M. Gustavsson, J. Wikner, N. Tan, *CMOS Data Converters for Communications*, Kluwer Academic Publishers, 2000.
- A.2 B. Razavi, Principles of Data Conversion System Design, Wiley-IEEE Press, 1994.
- A.3 ADC and DAC <u>Glossary</u> by Maxim.
- A.4 B. Murmann, "ADC Performance Survey 1997-2009," [Online].
- A.5 S. Pavan, N. Krishnapura, EE658: Data Conversion Circuits Course at IIT Madras [Online].
- A.6 The Fundamentals of FFT-Based Signal Analysis and Measurement, T.I. App Note here.

References

Delta-Sigma Data Converters

- **B.1** R. Schreier, G. C. Temes, *Understanding Delta-Sigma Data Converters*, Wiley-IEEE Press, 2005 (the Green Bible of Delta-Sigma Converters).
- **B.2** S. R. Norsworthy, R. Schreier, G. C. Temes, *Delta-Sigma Data Converters: Theory, Design, and Simulation*, Wiley-IEEE Press, 1996 (the Yellow Bible of Delta-Sigma Converters).
- **B.3** S. Pavan, N. Krishnapura, "Oversampling Analog to Digital Converters Tutorial," 21st International Conference on VLSI Design, Hyderabad, Jan, 2008.
- **B.4** S. H. Ardalan, J. J. Paulos, "An Analysis of Nonlinear behavior in Delta-Sigma Modulators," *IEEE TCAS*, vol. 34, no. 6, June 1987.
- **B.5** R. Schreier, "An Empirical Study of Higher-Order Single-Bit Delta-Sigma Modulators," *IEEE TCAS-II*, vol. 40, no. 8, pp. 461-466, Aug. 1993.
- **B.6** J. G. Kenney and L. R. Carley, "Design of multibit noise-shaping data converters," *Analog Integrated Circuits Signal Processing Journal*, vol. 3, pp. 259-272, 1993.
- **B.7** L. Risbo, "Delta-Sigma Modulators: Stability Analysis and Optimization," Doctoral Dissertation, Technical University of Denmark, 1994 [Online].
- **B.8** R. Schreier, J. Silva, J. Steensgaard, G. C. Temes, "Design-Oriented Estimation of Thermal Noise in Switched-Capacitor Circuits," *IEEE TCAS-I*, vol. 52, no. 11, pp. 2358-2368, Nov. 2005.

References

CAD for Mixed-Signal Design

- **D.1** K. Kundert, "Principles of Top-Down Mixed-Signal Design," *Designer's Guide Community* [Online].
- **D.2** R. Schreier, Matlab Delta-Sigma Toolbox, 2009 [Online], [Manual], [One page summary].
- **D.3** Jose de la Rosa, "SIMSIDES Toolbox: An Interactive Tool for the Behavioral Simulation of Discrete-and Continuous-time SD Modulators in the MATLAB," University of Sevilla, Spain, [Contact the authors for the software].
- **D.4** P. Malcovati, Simulink Delta-Sigma Toolbox 2, 2009. Available [Online].

Example Datasheets

- E.1 A 16-bit, 2.5MHz/5 MHz/10 MHz, 30 MSPS to 160 MSPS Dual Continuous Time Sigma-Delta ADC – <u>AD9262</u>, Analog Devices, 2008.
- E.2 A 24-bit, 192 kHz Multi-bit Audio ADC <u>CS5340</u>, Cirrus Logic, 2008.