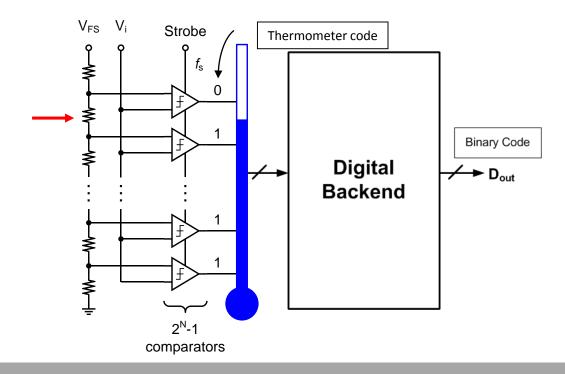
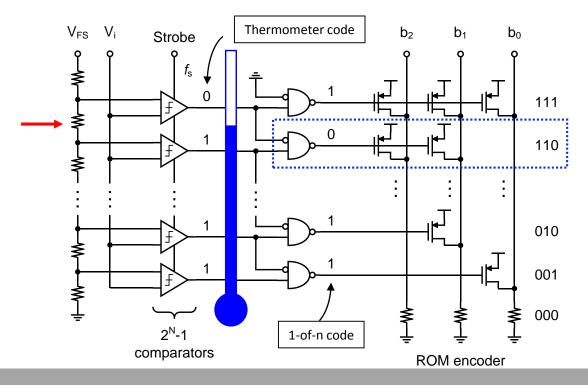

FLASH ADCS

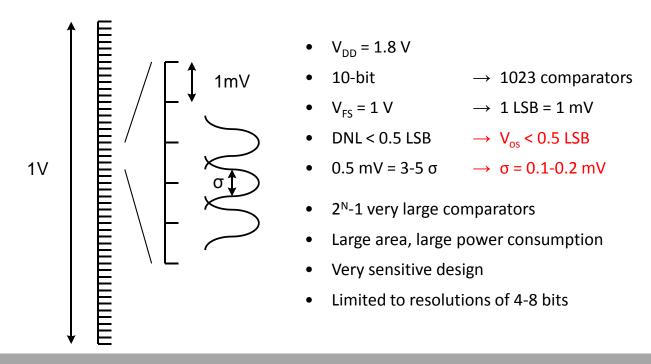
University of Idaho College of Engineering


FLASH ADC ARCHITECTURE

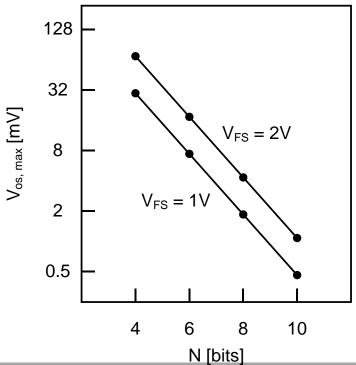
- Reference ladder consists of 2^N matched resistors
- Input is compared to 2^N-1 reference voltages
- Massive parallelism
- Very fast ADC architecture
- Latency = $1 T_s = 1/f_s$
- Throughput = f_s
- Complexity = 2^N



THERMOMETER CODE



THERMOMETER CODE



FLASH ADC CHALLENGES: EXAMPLE

FLASH ADC CHALLENGES

- DNL < 0.5 LSB
- Large Full-scale voltage (V_{FS}) relaxes offset tolerance
- Small V_{FS} benefits conversion speed (settling, linearity of building blocks)

ADC INPUT CAPACITANCE

$$\sigma^2(V_{th}) = \frac{A_{Vth}^2}{WI}$$
 $C_g = 10 \text{ fF}/\mu\text{m}^2$

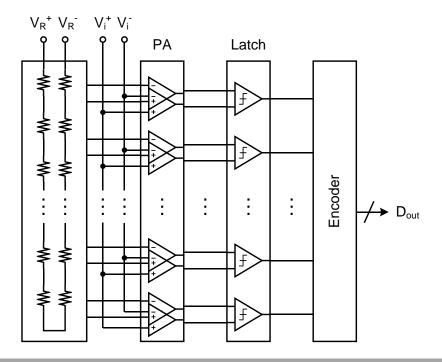
 \rightarrow 63 comparators

• $V_{FS} = 1 V$ $\rightarrow 1 LSB = 16 mV$

•
$$\sigma = LSB/4$$
 $\rightarrow \sigma = 4 \text{ mV}$

•
$$A_{VT0} = 10 \text{ mV} \cdot \mu \text{m}$$

 \rightarrow L = 0.24 μ m, $W = 26 \mu m$

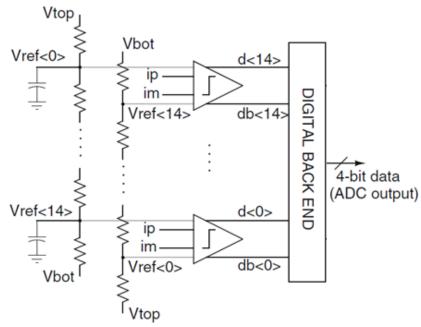

N (bits)	# of comp.	C _{in} (pF)
6	63	3.9
8	255	250
10	1023	??!

- Small V_{os} leads to large device sizes, hence large area and power
- Large comparator leads to large input capacitance, difficult to drive and difficult to achieve sufficient tracking bandwidth

M. Pelgrom, A. Duinmaijer, and A. Welbers, "Matching properties of MOS transistors," IEEE Journal of Solid-State Circuits, vol. 24, no. 5, pp. 1433-1439, 1989.

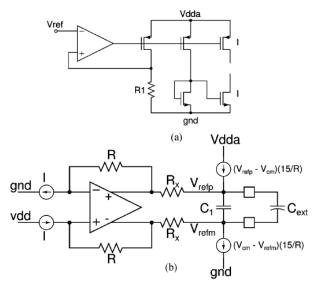
FULLY-DIFFERENTIAL ARCHITECTURE

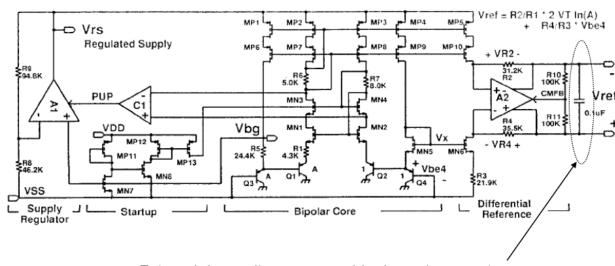
- V_{FS} is effectively doubled
- 3-dB gain in SNR
- Better CMRR
- Noise immunity
- Input feedthrough is cancelled
- C_{in} nonlinearity partially removed



FLASH ADC DESIGN CONSIDERATIONS

- Use a dedicated S/H (or T/H) for better dynamic performance
 - Can be avoided when using the A/D inside a $\Delta\Sigma$ loop
- Large input range for the quantizer has several benefits
 - Increased step-size (V_{ISR}) relaxes offset requirements on the comparators
 - Reduced matching requirements result in small input cap to the S/H, easier to drive
 - Reduced input cap results in smaller clock routing parasitics power savings in clock drivers
- Comparator Design
 - See comparator design notes/slides

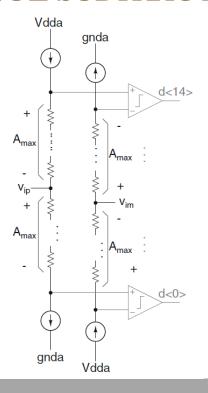

FLASH ADC: REFERENCE LADDER


- Differential reference ladder
- Decaps on the reference taps
 - large RC time-constant will not allow reference restoration after kickback noise
 - Small R will lead to power dissipation
 - Optimize RC time-constant value
 - Subtract references from the input in a differential manner
 - Several topologies are possible
- Several architectures for the digital backend
 - May need to pipeline digital logic at high sampling rates >500 MS/s

REFERENCE GENERATOR (FOR V_{REFP} AND V_{REFM})

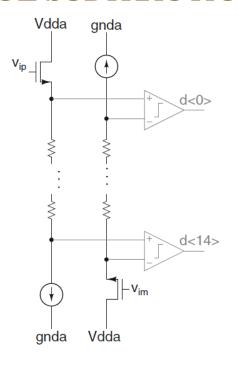
[Brooks 1994]

External decoupling caps provide dynamic currents


 \Rightarrow Low power reference buffer

FLASH ADC: REFERENCE SUBTRACTION

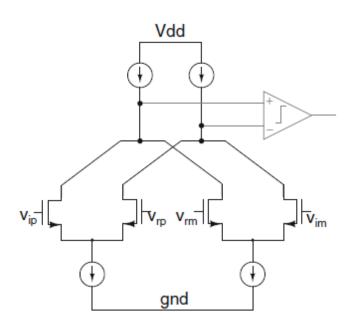
REFERENCE SUBTRACTION: SCHEME I



- Employ reference ladder for subtraction
- Choose current (I) such that differential voltage drop across $R = 1 V_{LSB}$
- Ladder is part of the signal path
 - Comparator input cap load the resistor taps
 - Excess delay

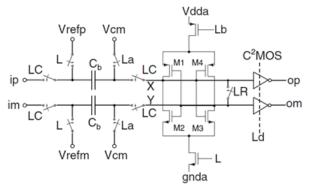
$$A_{max} = \frac{0.5V_{dd} - \Delta V}{2}$$

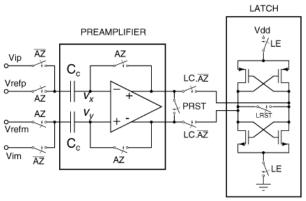
Paton, S., Di Giandomenico, A., Hernandez, L., Wiesbauer, A., Potscher, T., & Clara, M. (2004). A 70-mW 300-MHz CMOS continuous-time $\Sigma\Delta$ ADC with 15-MHz bandwidth and 11 bits of resolution. *IEEE Journal of Solid State Circuits*, 39(7), 1056–1063.


REFERENCE SUBTRACTION: SCHEME II

- Source followers to buffer v_{in}
 - reduced swing, varies with PVT
- Ladder is part of the signal path
 - Comparator input cap load the resistor taps
 - Excess delay

Arias, J., Kiss, P., Prodanov, V., Boccuzzi, V., Banu, M., Bisbal, D., et al. (2006). A 32-mW 320-MHz continuous-time complex $\Sigma\Delta$ ADC for multi-mode wireless-LAN receivers. *IEEE Journal of Solid State Circuits*, 41(2), 339–351.

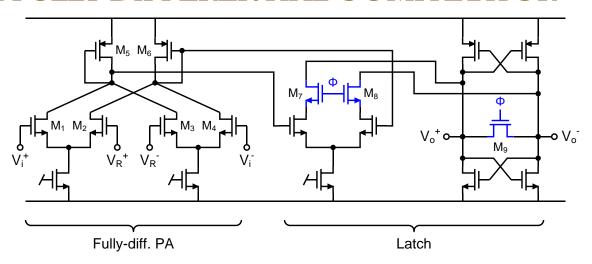

REFERENCE SUBTRACTION: SCHEME III



- Differential difference amplifier for subtracting the reference
 - followed by a zero crossing detector
- Relaxes the impedance requirements on the ladder
- Mismatch in differential pairs and tail current sources results in comparator offset
 - current trimming (see the reference below)
- Finite BW of the amplifier causes excess delay

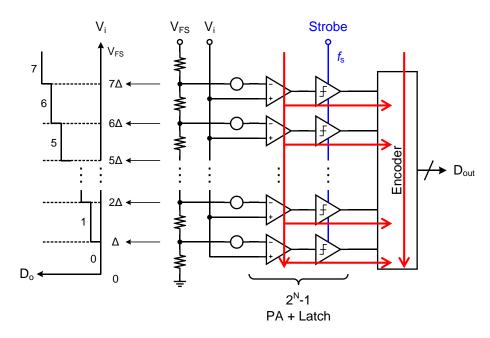
Mitteregger, G., Ebner, C., Mechnig, S., Blon, T., Holuigue, C., & Romani, E. (2006). A 20-mW 640-MHz CMOS continuous-time $\Sigma\Delta$ ADC with 20-MHz signal bandwidth, 80-dB dynamic range and 12-bit ENOB. *IEEE Journal of Solid State Circuits*, 41(12), 2641-2649.

REFERENCE SUBTRACTION: SCHEME IV



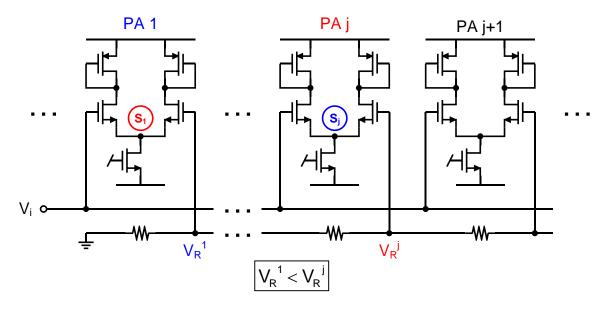
- Switched-capacitor reference subtraction
 - Pay attention to charge injection
- ADC can handle large input swing
- Slow when auto-zeroing preamp is used
 - Large settling time constant
 - Reference subtraction in background

EXAMPLE: FULLY-DIFFERENTIAL COMPARATOR


- Double-balanced, fully-differential preamp
- Switches (M₇, M₈) added to stop input propagation during regeneration
- Active pull-up PMOS added to the latch

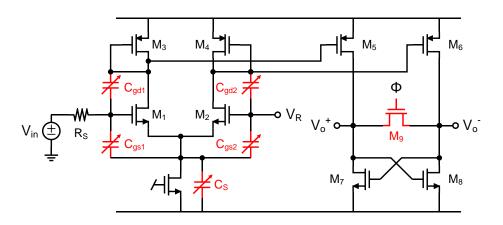
FLASH ADC: ERRORS

FLASH ADC ERRORS



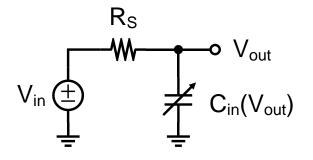
- SHA-less
- Signal and clock propagation delay
- 2^N-1 PAs + latches must be matched
- Synchronized clock strobe signal is critical

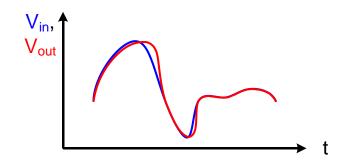
Going parallel is fast, but also gives rise to inherent problems...


PREAMP INPUT COMMON MODE

Input CM difference creates systematic mismatch (offset, gain, $C_{\rm in}$, tracking BW, and CMRR) among preamps

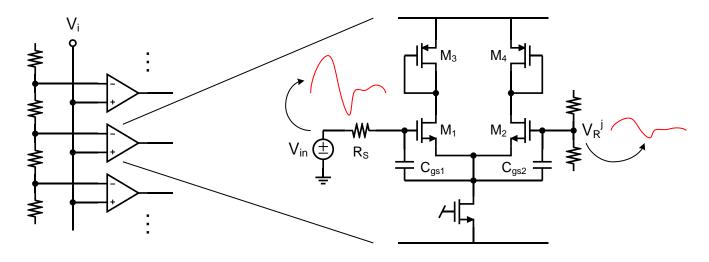
SAMPLING APERTURE ERROR




Ф	Mode
"high"	Track
"low"	Regenerate

- Preamp delay and V_{THN} of sampling switch (M_9) are both signal-dependent \rightarrow signal-dependent sampling point (aperture error)
- A major challenge of distributing clock signals across $2^{N}-1$ comparators in flash ADC with minimum clock skew (routing, V_{THN} mismatch of M_9 , etc.)

NONLINEAR INPUT CAPACITANCE

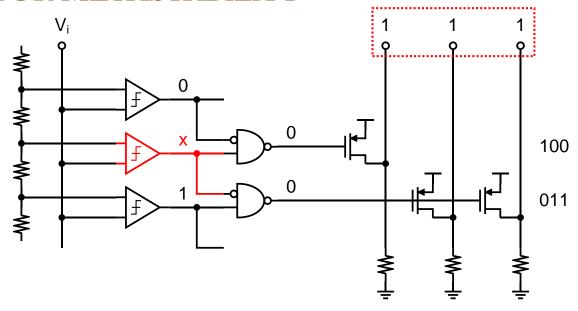


Signal-dependent input bandwidth (1/R_SC_{in}) introduces distortion

INPUT SIGNAL FEEDTHROUGH

Feedthrough of V_{in} to the reference ladder through the serial connection of C_{gs1} and C_{gs2} disturbs the reference voltages

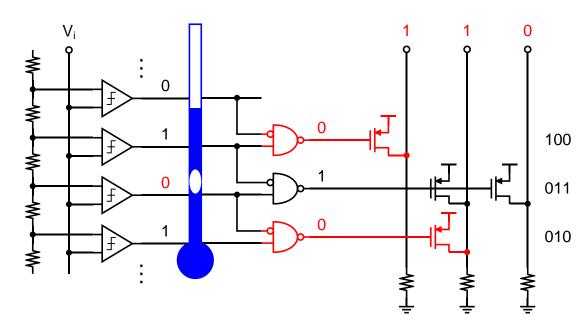
COMPARATOR METASTABILITY


Assuming that the input is uniformly distributed over V_{FS}, then

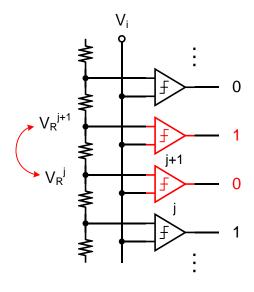
$$BER = \frac{\Delta}{1LSB}$$

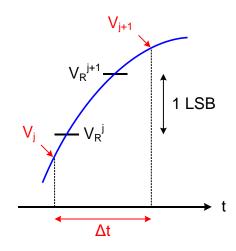
$$V_{o}(t) = V_{i}(0) \cdot A_{V1}A_{V2} \cdot exp(t \cdot g_{m}/C_{L})$$

- Cascade preamp stages (typical flash comparator has 2-3 PA stages)
- Use pipelined multi-stage latches; PA can be pipelined too
- Avoid branching off comparator logic outputs

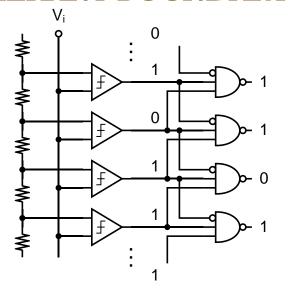

COMPARATOR METASTABILITY

Logic levels can be misinterpreted by digital gates (branching off, diff. outputs)


BUBBLES (SPARKLES) IN THERMOMETER CODE

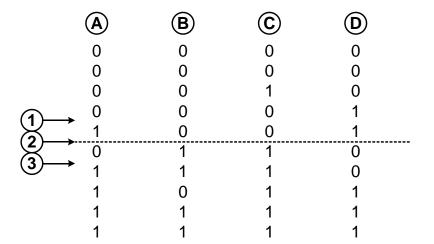

Static/dynamic comparator errors cause bubbles in thermometer code

BUBBLES (SPARKLES)


Comparator offset

Timing error

BUBBLE-TOLERANT BOUNDARY DETECTOR



- 3-input NAND
- Detect "011" instead of "01" only
- "Single" bubble correction
- Biased correction

<u>Ref</u>: J. G. Peterson, "A monolithic video A/D converter," *IEEE Journal of Solid-State Circuits*, vol. 14, pp. 932-937, issue 6, 1979.

BUILT-IN BIAS

Case	"011"	"001"			
Case	Det.	Det.			
А	3	1			
В	Fail	2			
С	2	Fail			
D	Fail	Fail			

Inspecting more neighboring comparator outputs improves performance

MAJORITY VOTING LOGIC

$$C_{j}^{*} = C_{j-1}C_{j} + C_{j}C_{j+1} + C_{j-1}C_{j+1}$$

	A		lacksquare		©		D	(D)			
	0	0	0	0	0	0	0	0			
	0	0	0	0	0	0	0	0			
	0	0	0	0	1	0	0	0			
	0	0	0	0	0	0	1	1			
\\\	1	0	0	0	0	0	1	1			
2	0	1	1	1	1	1	0	0			
<u></u>	1	1	1	1	1	1	0	0			
	1	1	0	1	1	1	1	1			
	1	1	1	1	1	1	1	1			
	1	1	1	1	1	1	1	1			

Case	"011"	Majority				
Case	Det.	voting				
Α	3	2				
В	Fail	0				
С	2	2				
D	Fail	Fail				

<u>Ref</u>: C. W. Mangelsdorf, "A 400-MHz input flash converter with error correction," *IEEE Journal of Solid-State Circuits*, vol. 25, pp. 184-191, issue 1, 1990.

GRAY ENCODING

$$G_1 = T_1 \overline{T_3} + T_5 \overline{T_7}$$

$$G_2 = T_2 \overline{T_6}$$

$$G_3 = T_4$$

Only one transition b/t adjacent codes

	Т	her	mor	net	er		Gray	Binary
0	0	0	0	0	0	0	0 0 0	0 0 0
1	0	0	0	0	0	0	0 0 1	0 0 1
1	1	0	0	0	0	0	0 1 1	0 1 0
1	1	1	0	0	0	0	0 1 0	0 1 1
1	1	1	1	0	0	0	1 1 0	1 0 0
1	1	1	1	1	0	0	1 1 1	1 0 1
1	1	1	1	1	1	0	1 0 1	1 1 0
1	1	1	1	1	1	1	1 0 0	1 1 1
T ₁	T ₂	T ₃	T ₄	T ₅	T ₆	T ₇	G ₃ G ₂ G ₁	B ₃ B ₂ B ₁

- One comparator output is ONLY used once → No branching!
- Gray encoding fails benignly in the presence of bubbles
- Codes are also robust over metastability errors

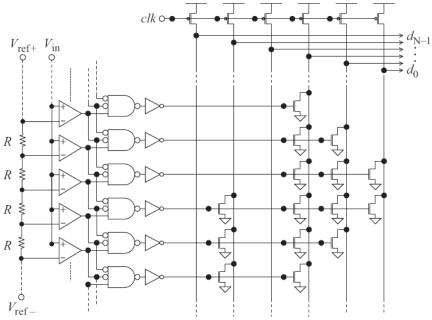
GRAY ENCODING

	Thermometer									Gray			Decimal						
1	1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	0	1	1	13
	1														1	0	0	0	15
1	1	1	1	1	1	1	1	1	1	1	1	0	0	1	1	0	1	0	12

$$G_1 = T_1 \overline{T_3} + T_5 \overline{T_7}$$

$$G_2 = T_2 \overline{T_6}$$

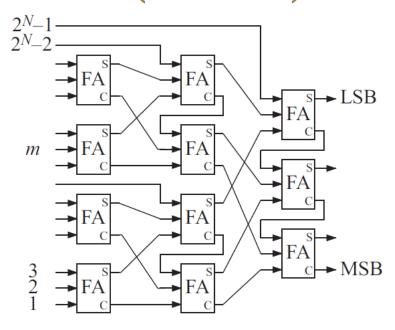
$$G_3 = T_4$$


Conversion of Gray code to binary code is quite time-consuming → "quasi" Gray code

<u>Ref</u>: Y. Akazawa, et al., "A 400MSPS 8b flash AD conversion LSI," in *IEEE International Solid-State Circuits Conference*, Dig. Tech. Papers, 1987, pp. 98-99.

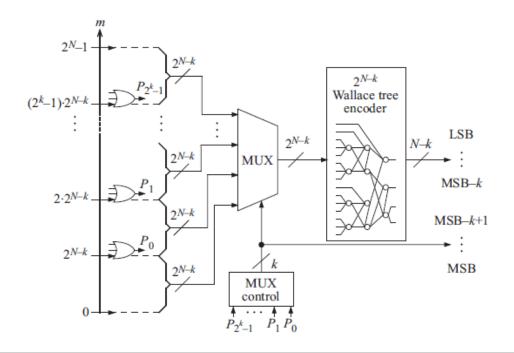
FLASH ADC: BINARY DECODERS

GRAY ENCODED ROM DECODER

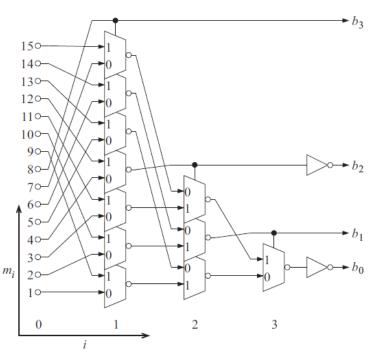


Thermometer-to-Binary Decoders for Flash Analog-to-Digital Converters

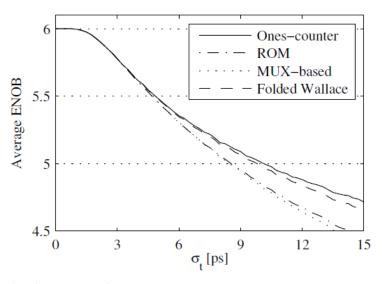
Erik Säll and Mark Vesterbacka

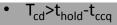

WALLACE TREE ADDER (1^S ADDER)

Wallace tree decoder for an N = 4-bit flash ADC.



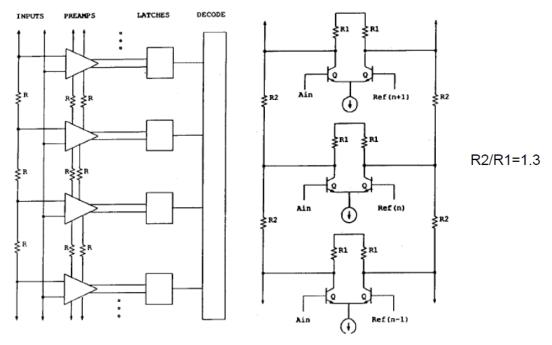
FOLDED WALLACE TREE DECODER


MUX-BASED DECODER

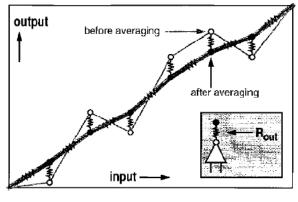

Multiplexer-based decoder for N=4 bits.

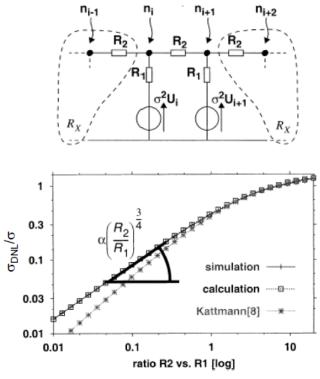
COMPARISON OF DECODER SCHEMES

- Mostly custom design at higher speeds
- Pipeline the digital backend at high-sampling rates to meet clock timing
 - $T_{pd} < T_{CK} (t_{pcq} + t_{setup})$

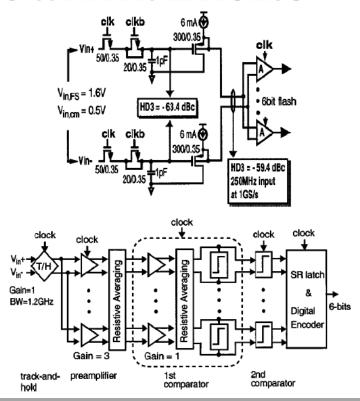


FLASH ADC: OTHER TECHNIQUES


OFFSET AVERAGING (1)

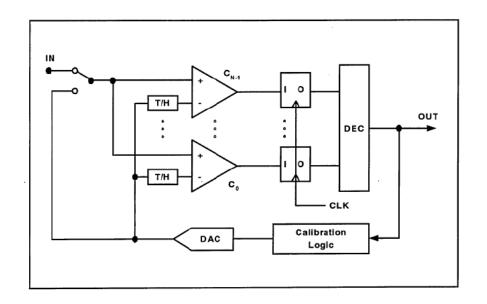

[Kattmann & Barrow, ISSCC 1991]

OFFSET AVERAGING (2)


[Bult & Buchwald, JSSC 12/1997]

[Scholtens & Vertregt, JSSC 12/2002]

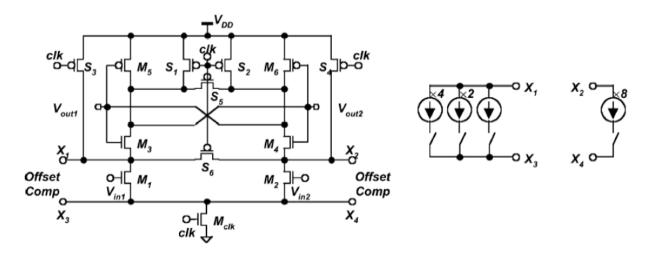
FLASH ADC WITH AVERAGING



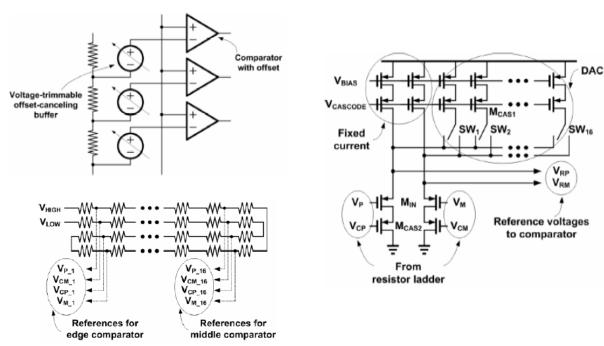
[Choi & Abidi, JSSC 12/2001]

Resolution	6 bits
Conversion Rate	1.3 GS/s
INL/DNL @ Fs = 1 GHz	0.35 LSB / 0.2 LSB
Input Range	1.6 V _{p-p} differential
Input Capacitance (T/H)	1 pF
Bit Error Rate @ fs = 1 GHz	< 10 ⁻¹⁰
SFDR @ fin = 100 MHz	> 44 dB up to 1.3 GS/s
SNDR @ fin = 630 MHz @ fin = 650 MHz	35 dB @ 1 GS/s 32 dB @ 1.3 GS/s
Power Dissipation (50% due to logic and clock)	500 mW @ 1 GS/s 545 mW @ 1.3 GS/s
Voltage Supply	3.3 V
Active/Total Die Area	2x0.4 mm ² / 2.2x2.2 mm ²
Technology	0.35-µm CMOS

Averaging networks designed to reduce input referred offset by 3x

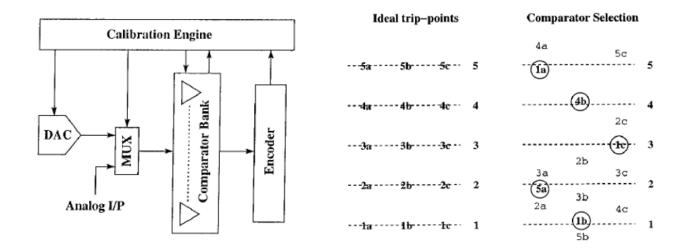

OFFSET CALIBRATION

S. Sutardja, "360 Mb/s (400 MHz) 1.1 W 0.35μm CMOS PRML read channels with 6 burst 8-20× over-sampling digital servo," ISSCC Dig. Techn. Papers, Feb. 1999.


COMPARATOR WITH OFFSET CORRECTING DAC

[K.-L.J. Wong and C.-K.K. Yang, "Offset compensation in comparators with minimum input-referred supply noise," JSSC, May 2004.]

HIGH-PERFORMANCE FLASH WITH CALIBRATION (1)



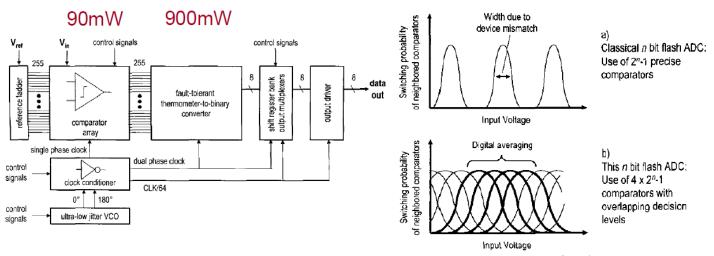
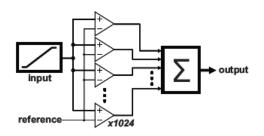
[Park & Flynn, "A 3.5 GS/s 5-b Flash ADC in 90 nm CMOS," CICC 2006]

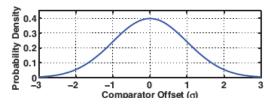
COMPARATOR REDUNDANCY (1)

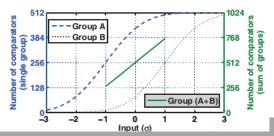
 Idea: Build a "sea of imprecise comparators", then determine which ones to use...

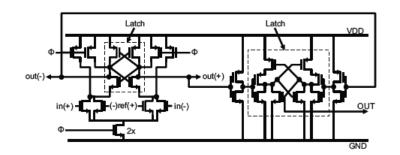
C. Donovan, M. P Flynn, "A 'digital' 6-bit ADC in 0.25-µm CMOS," IEEE J. Solid-State Circuits, pp. 432-437, March 2002.

COMPARATOR REDUNDANCY (2)


Fig. 1 Illustration of the ADC operation scheme.


Paulus et al., "A 4GS/s 6b flash ADC in 0.13um CMOS," *VLSI Circuits Symposium*, 2004



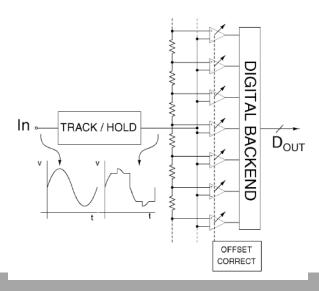
STOCHASTIC FLASH ADC

- Fully synthesized ADC using 'digital' comparator cells (large offsets)
- Use more than 1 comparator for a reference threshold
 - Use 'detection theory' to make accurate decisions around a threshold, by using more than one observation
- Low speed designs (<20 MS/s)

A 6b Stochastic Flash Analog-to-Digital Converter Without Calibration or Reference Ladder

Skyler Weaver¹, Benjamin Hershberg¹, Daniel Knierim², and Un-Ku Moon¹

FLASH ADC: CASE STUDY



IEEE JOURNAL OF SOLID-STATE CIRCUITS, VOL. 41, NO. 9, SEPTEMBER 2006

1959

A Distortion Compensating Flash Analog-to-Digital Conversion Technique

Venkata Srinivas, Shanthi Pavan, Ashish Lachhwani, and Naga Sasidhar

T/H DISTORTION

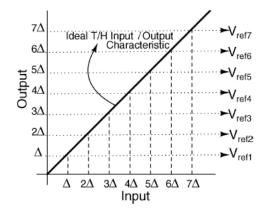


Fig. 2. Flash ADC behavior with an ideal track-and-hold.

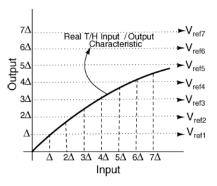


Fig. 3. Flash ADC behavior with a real track-and-hold having static nonlinearity.

PRE-DISTORTED REFERENCES

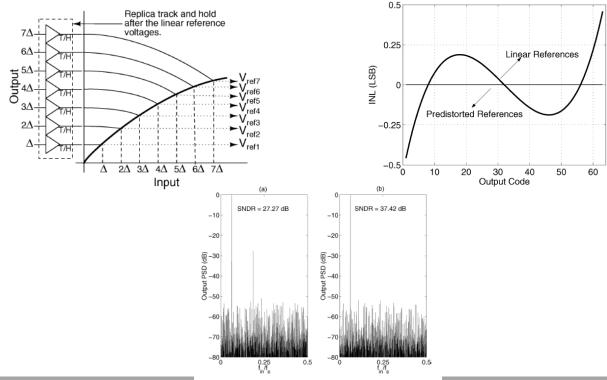
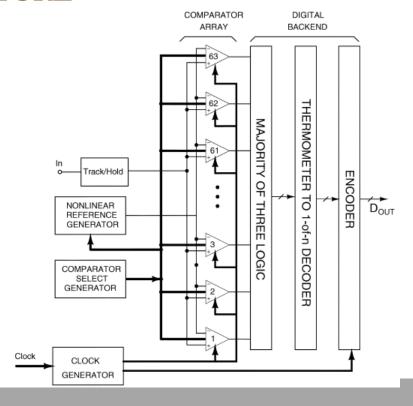
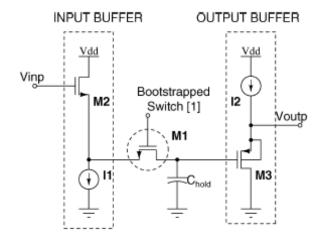
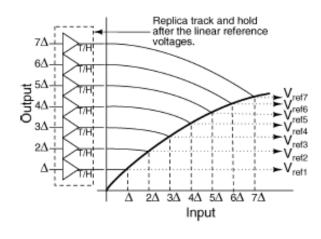
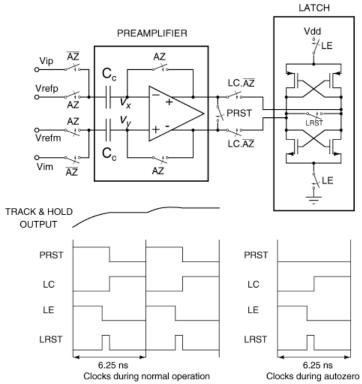
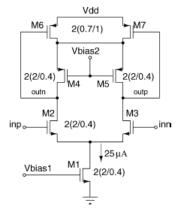



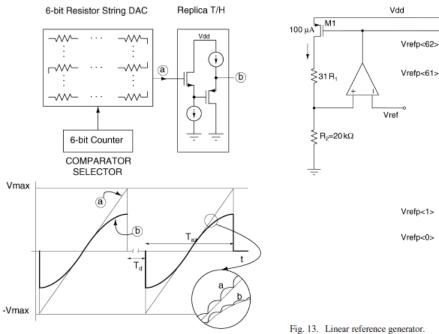
Fig. 5. ADC output spectrum with track-and-hold having static nonlinearity with (a) linear references and (b) predistorted references.




ADC ARCHITECTURE


T/H CIRCUIT





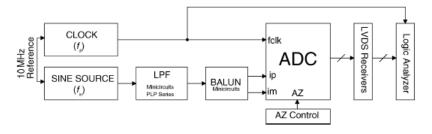
Schematic of the preamplifier.

NON-LINEAR REFERENCE GENERATOR

200 μA

Vrefm<0>

Vrefm<1>


Vrefm<61>

Vrefm<62>

bias

Vcm_{in}

ADC TESTING

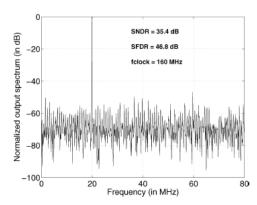


Fig. 19. Normalized output spectrum of the ADC.

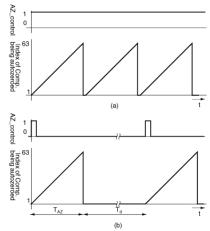
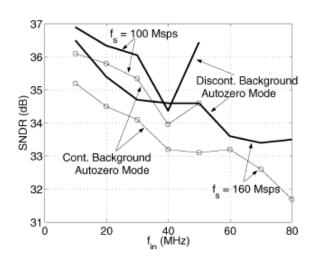
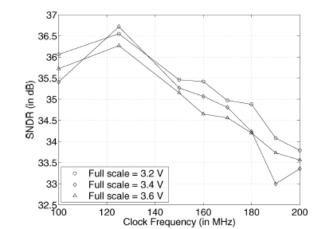




Fig. 20. Illustration of (a) continuous background autozero mode and (b) discontinuous background autozero mode.

TEST RESULTS

$$\label{eq:Figure of Merit} \begin{aligned} & \frac{\text{Energy}}{(\text{conversion_step})} = \frac{P_{\text{diss}}}{2^{\text{ENOB}} \times f_{\text{samp}}} \end{aligned}$$

SUMMARY OF ADC PERFORMANCE

Resolution	6 bits
Technology	0.35-μm CMOS 2P4M
Supply voltage	3.3 V
Nominal input swing	$3.4 V_{pp}$ differential
DNL (nominal input range)	0.3 LSB
INL (nominal input range)	0.3 LSB
SNDR	$36.0 \text{ dB } @f_{in} = 49.9 \text{ MHz},$
	$f_s = 100 \text{ MHz}$
	33.6 dB $@f_{in} = 79.9 \text{ MHz},$
	$f_s = 160 \text{ MHz}$
Power consumption	$50~\mathrm{mW}$ @ $f_s=160~\mathrm{MHz}$
Active Area	$2.0 \times 0.4 \text{ mm}^2$
Chip package	DIP40

REFERENCES

- 1. Rudy van de Plassche, "CMOS Integrated Analog-to-Digital and Digital-to-Analog Converters," 2nd Ed., Springer, 2005.
- 2. N. Krishnapura, *Analog IC Design Lectures*, IIT Madras, 2008.
- 3. Y. Chiu, Data Converters Lecture Slides, UT Dallas 2012.
- 4. B. Boser, Analog-Digital Interface Circuits Lecture Slides, UC Berkeley 2011.

