ECE 415/515 –ANALOG INTEGRATED CIRCUIT DESIGN

SHORT CHANNEL BIASING

VISHAL SAXENA VSAXENA@UIDAHO.EDU

© Vishal Saxena

LONG-CHANNEL CMOS, L_{MIN} =1UM

 Table 9.1 Typical parameters for analog design using the *long-channel* CMOS process discussed in this book. Note that the parameters may change with temperature or drain-to-source voltage (e.g., Fig. 9.24).

<i>Long</i> -channel MOSFET parameters for general analog design <i>VDD</i> = 5 V and a scale factor of 1 μ m (<i>scale</i> = 1e–6)			
Parameter	NMOS	PMOS	Comments
Bias current, I_D	20 µA	20 µA	Approximate
W/L	10/2	30/2	Selected based on I_{D} and $V_{{\it DS}, {\it sat}}$
$V_{\rm DS,sat}$ and $V_{\rm SD,sat}$	250 mV	250 mV	For sizes listed
$V_{\rm GS}$ and $V_{\rm SG}$	1.05 V	1.15 V	No body effect
$V_{T\!H\!N}{\rm and}V_{T\!H\!P}$	800 mV	900 mV	Typical
$\partial V_{THN,P} / \partial T$	-1 mV/C°	$-1.4 \text{ mV/C}^{\circ}$	Change with temperature
KP_n and KP_p	$120 \ \mu A/V^2$	$40 \ \mu A/V^2$	$t_{ox} = 200 \text{ Å}$
$C'_{ox} = \varepsilon_{ox}/t_{ox}$	$1.75 f \mathrm{F/\mu m^2}$	$1.75f\mathrm{F/\mu m^2}$	$C_{ox} = C'_{ox}WL \cdot (scale)^2$
C_{oxp} and C_{oxp}	35 <i>f</i> F	105 <i>f</i> F	PMOS is three times wider
$C_{\scriptscriptstyle gsn} \text{ and } C_{\scriptscriptstyle sgp}$	23.3 <i>f</i> F	70 <i>f</i> F	$C_{gs} = \frac{2}{3}C_{ox}$
$C_{\mathit{gdn}} \text{ and } C_{\mathit{dgp}}$	2fF	6 <i>f</i> F	$C_{gd} = CGDO \cdot W \cdot scale$
g_{mn} and g_{mp}	150 μA/V	150 μA/V	At $I_D = 20 \ \mu A$
r_{on} and r_{op}	5 ΜΩ	$4 \mathrm{M}\Omega$	Approximate at $I_D = 20 \ \mu A$
$g_{mn}r_{on}$ and $g_{mp}r_{op}$	750 V/V	600 V/V	Open circuit gain
λ_n and λ_p	0.01 V ⁻¹	0.0125 V ⁻¹	At <i>L</i> = 2
f_{Tn} and f_{Tp}	900 MHz	300 MHz	For $L = 2$, f_T goes up if $L = 1$

fldaho

Figures from CMOS Circuit Design, Layout, and Simulation, Copyright Wiley-IEEE, CMOSedu.com

SHORT-CHANNEL CMOS, L_{MIN} =50NM

Short-channel MOSFET parameters for general analog design VDD = 1 V and a scale factor of 50 nm (scale = 50e-9) Parameter NMOS PMOS Comments Approximate, see Fig. 9.31 Bias current, ID 10 uA 10 uA W/L50/2100/2Selected based on I_D and V_{av} $5\mu m/100nm$ Actual W/L 2.5µm/100nm L_{min} is 50 nm $V_{DS,sat}$ and $V_{SD,sat}$ 50 mV50 mVHowever, see Fig. 9.32 and the associated discussion Vom and Vov 70 mV70 mV V_{GS} and V_{SG} 350 mV350 mVNo body effect 280 mV280 mV Typical V_{THN} and V_{THP} $\partial V_{THNP} / \partial T$ $-0.6 \text{ mV/C}^{\circ}$ - 0.6 mV/C° Change with temperature $110 \ge 10^3 \text{ m/s}$ $90 \ge 10^3 \text{ m/s}$ From the BSIM4 model v_{sam} and v_{sam} 14 Å 14 Å Tunnel gate current, 5 A/cm² t_{ar} $C'_{ox} = \varepsilon_{ox}/t_{ox}$ $25 f F/\mu m^2$ $25 f F/\mu m^2$ $C_{ox} = C'_{ox}WL \cdot (scale)^2$ PMOS is two times wider C_{oxp} and C_{oxp} 6.25 f F 12.5 f F $C_{gs} = \frac{2}{3}C_{ox}$ C_m and C_sep 4.17 fF 8.34 fF $C_{gd} = CGDO \cdot W \cdot scale$ 1.56 f F 3.7*f* F C_{adm} and C_{dem} $150 \ \mu A/V$ g_{mn} and g_{mp} 150 µA/V At $I_D = 10 \ \mu A$ 167 kΩ 333 kΩ Approximate at $I_D = 10 \ \mu A$ ron and rov 25 V/V 50 V/V !!Open circuit gain!! gmmron and gmprov $0.6 V^{-1}$ $0.3 V^{-1}$ L = 2 λ_n and λ_n f_{T_n} and f_{T_n} 6000 MHz 3000 MHz Approximate at L = 2

 Table 9.2 Typical parameters for analog design using the *short-channel* CMOS process discussed in this book. These parameters are valid only for the device sizes and currents listed.

Figures from CMOS Circuit Design, Layout, and Simulation, Copyright Wiley-IEEE, CMOSedu.com

© Vishal Saxena

BMR CIRCUIT IN 1UM CMOS

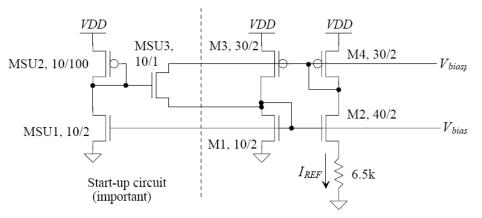


Figure 20.15 Beta-multiplier reference for biasing in the long-channel process described in Table 9.1.

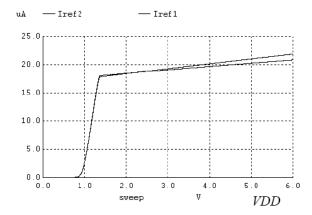


Figure 20.16 The reference currents through M1 and M2 in the Beta-multiplier.

Figures from CMOS Circuit Design, Layout, and Simulation, Copyright Wiley-IEEE, CMOSedu.com

Ι

© Vishal Saxena

50NM BMR CIRCUIT

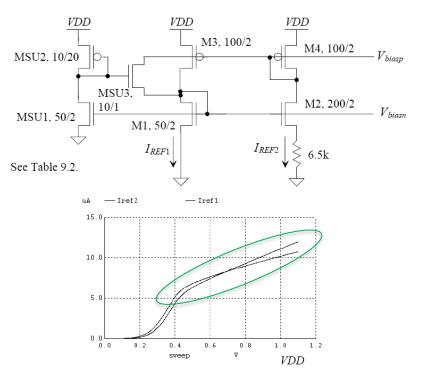
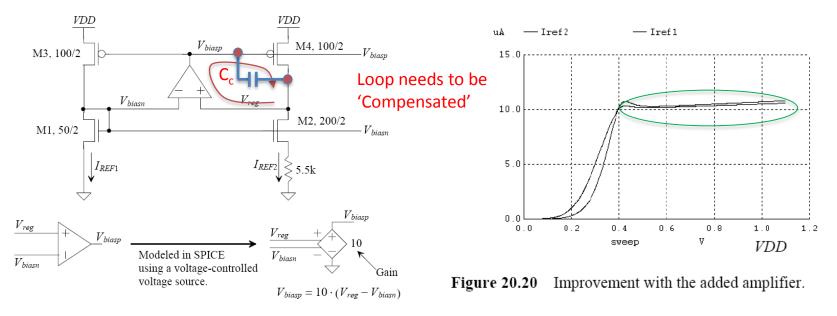


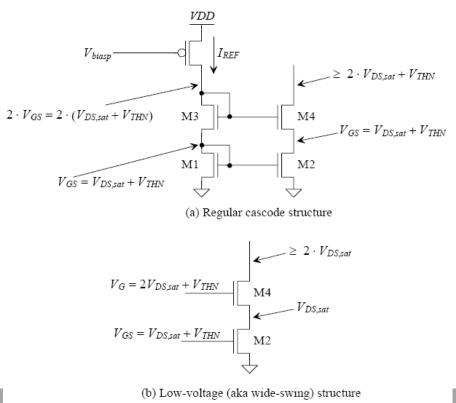
Figure 20.18 Beta-multiplier reference for short-channel design (see Table 9.2).

Figures from CMOS Circuit Design, Layout, and Simulation, Copyright Wiley-IEEE, CMOSedu.com

© Vishal Saxena

SHORT-CHANNEL BMR CIRCUIT




Figure 20.19 Increasing the output resistance of short-channel MOSFETs using feedback. The result, for the Beta-multiplier circuit, is better power supply sensitivity.

Figures from CMOS Circuit Design, Layout, and Simulation, Copyright Wiley-IEEE, CMOSedu.com

][

C Vishal Saxena

CASCODE CURRENT SOURCES

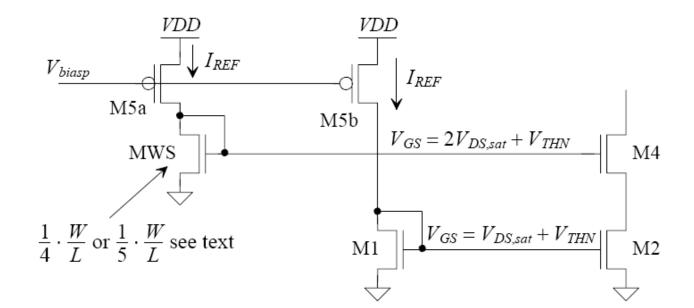

Figures from CMOS Circuit Design, Layout, and Simulation, Copyright Wiley-IEEE, CMOSedu.com

Figure 20.31 DC voltages in (a) a cascode current mirror and in (b) a low-voltage cascode.

WIDE-SWING CASCODE CURRENT SOURCES

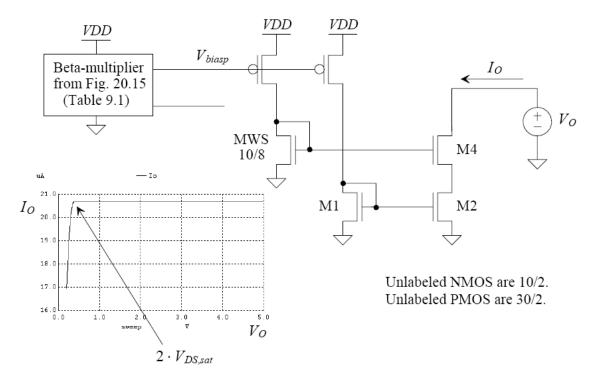
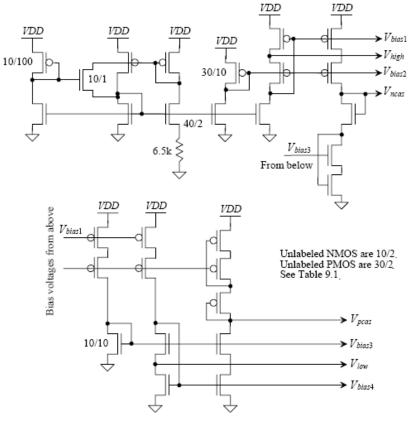

Figures from CMOS Circuit Design, Layout, and Simulation, Copyright Wiley-IEEE, CMOSedu.com

Figure 20.32 Generating a bias voltage for M4.

© Vishal Saxena

WIDE-SWING CASCODE CURRENT SOURCES

Figures from CMOS Circuit Design, Layout, and Simulation, Copyright Wiley-IEEE, CMOSedu.com


Figure 20.33 Wide-swing cascode current source in the long-channel process.

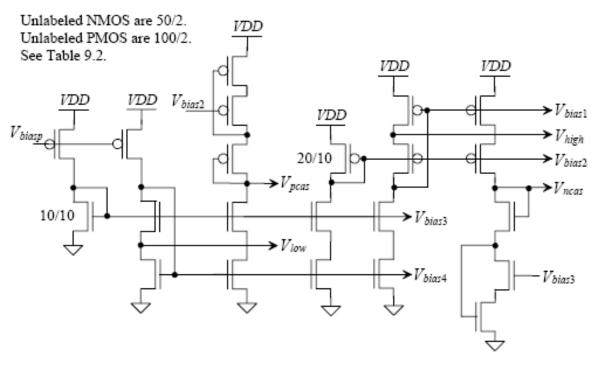
© Vishal Saxena

College of Engineering

<u>Oniversity or idaho</u>

LONG-CHANNEL BIAS CIRCUITS

Figures from CMOS Circuit Design, Layout, and Simulation, Copyright Wiley-IEEE, CMOSedu.com



/ishal S

Figure 20.43 General biasing circuit for long-channel CMOS design using the data in Table 9.1

yof Idaho

SHORT-CHANNEL BIAS CIRCUITS

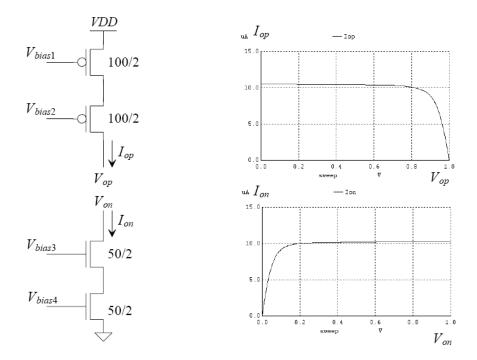

Figures from CMOS Circuit Design, Layout, and Simulation, Copyright Wiley-IEEE, CMOSedu.com

Figure 20.47 General biasing circuit for short-channel design using the data in Table 9.2.

© Vishal Saxena

College of Engineering

USING BIAS REFERENCES

Figures from CMOS Circuit Design, Layout, and Simulation, Copyright Wiley-IEEE, CMOSedu.com

Bias voltages come from Fig. 20.47 (short-channel parameters in Table 9.2).

Figure 20.48 Cascode current sources operating in a short-channel process.

© Vishal Saxena