

MOSFET Short Channel Effects

Vishal Saxena ECE, Boise State University

Oct 10, 2010

 \bigoplus

- MOSFETs with channel length (L) of the same order of magnitude as the drain/source region depths.
- Submicron MOSFETs (with $L < 1 \,\mu m$) exhibit worsening short channel effects (SCE) as L is scaled down.

A long-channel NMOS (L= $4\mu m$)

A short-channel NMOS (L=0.2 $\mu m)$

SC MOSFET Characteristics

- Due to the high electric fields in the channel region, the carriers in SC MOSFETs are velocity saturated (v_{sat})
- MOSFET current (I_D) in saturation exhibites somewhat linear relation to V_{GS}

$$I_D = W \cdot v_{sat} \cdot C_{ox}^{'}(V_{GS} - V_{THN} - V_{DS,sat})$$

SC MOSFET Characteristics

- Due to the high electric fields in the channel region, the carriers in SC MOSFETs are velocity saturated (v_{sat})
- \blacksquare MOSFET current (I_D) in saturation exhibites somewhat linear relation to V_{GS}

$$I_D = W \cdot v_{sat} \cdot C_{ox}^{'}(V_{GS} - V_{THN} - V_{DS,sat})$$

 In the short-channel device, the field and potential contours have a 2D spread while the long-channel device has relatively 1D potential distribution.

• Here, $V_{GS} = 0.1V$ and $V_{DS} = 3.3V$.

- As seen in the constant potential contour plots, there is more surface potential (ψ_s) in the short channel MOSFET
 - more band bending near drain due to the drain field encroaching into the channel region
 - \blacksquare reduces V_{THN} when drain is biased at higher potential

This is called drain induced barrier lowering (DIBL)

- As seen in the constant potential contour plots, there is more surface potential (ψ_s) in the short channel MOSFET
 - more band bending near drain due to the drain field encroaching into the channel region
 - \blacksquare reduces V_{THN} when drain is biased at higher potential

• This is called drain induced barrier lowering (DIBL)

due to higher 2D electric field in the channel region.

- The stronger electric field corresponding to a higher V_{DS} , penetrates deeper into the channel
 - causes more pronounced short channel effects.
- \blacksquare The V_{THN} roll-off slope is higher for a varying L at a higher V_{DS}
 - due to higher 2D electric field in the channel region.

K Hot Carrier Generation

• Carriers drifting near the drain can obtain nenergy much higher than the thermal energy of carriers

called hot carriers

■ .The carriers reach velocity saturation (high velocity)

• Hot carriers can tunnel through the gate oxide causing degradation

• can also cause impact ionization in MOSFETs.

• Concept used in FLASH memory along with a floating gate to trap charges

Hot Carrier Generation

- Carriers drifting near the drain can obtain nenergy much higher than the thermal energy of carriers
 - called hot carriers
- .The carriers reach velocity saturation (high velocity)
- Hot carriers can tunnel through the gate oxide causing degradation
 - can also cause impact ionization in MOSFETs.
- Concept used in FLASH memory along with a floating gate to trap charges

Hot Carrier Generation

- Carriers drifting near the drain can obtain nenergy much higher than the thermal energy of carriers
 - called hot carriers
- .The carriers reach velocity saturation (high velocity)
- Hot carriers can tunnel through the gate oxide causing degradation
 - can also cause impact ionization in MOSFETs.
- Concept used in FLASH memory along with a floating gate to trap charges

Hot Carrier Generation

- Carriers drifting near the drain can obtain nenergy much higher than the thermal energy of carriers
 - called hot carriers
- .The carriers reach velocity saturation (high velocity)
- Hot carriers can tunnel through the gate oxide causing degradation
 - can also cause impact ionization in MOSFETs.
- Concept used in FLASH memory along with a floating gate to trap charges

• In CMOS, lightly doped drain (LDD) structure is used to reduce the effect of hot carriers and to reduce short channel effects

- After Poly patterning an LDD implant is performed in the active regions
- Afterwards, a nitride spacer is formed by depositing nitride and etching it
- The nitride spacer acts as a hard mask for the subsequent implants and protects the LDD region
- The n+ source/drain is formed by a heavy dose of n+ implant

- In CMOS, lightly doped drain (LDD) structure is used to reduce the effect of hot carriers and to reduce short channel effects
 - After Poly patterning an LDD implant is performed in the active regions
 - Afterwards, a nitride spacer is formed by depositing nitride and etching it
 - The nitride spacer acts as a hard mask for the subsequent implants and protects the LDD region
 - The n+ source/drain is formed by a heavy dose of n+ implant

- In CMOS, lightly doped drain (LDD) structure is used to reduce the effect of hot carriers and to reduce short channel effects
 - After Poly patterning an LDD implant is performed in the active regions
 - Afterwards, a nitride spacer is formed by depositing nitride and etching it
 - The nitride spacer acts as a hard mask for the subsequent implants and protects the LDD region
 - The n+ source/drain is formed by a heavy dose of n+ implant

- In CMOS, lightly doped drain (LDD) structure is used to reduce the effect of hot carriers and to reduce short channel effects
 - After Poly patterning an LDD implant is performed in the active regions
 - Afterwards, a nitride spacer is formed by depositing nitride and etching it
 - The nitride spacer acts as a hard mask for the subsequent implants and protects the LDD region
 - The n+ source/drain is formed by a heavy dose of n+ implant

- In CMOS, lightly doped drain (LDD) structure is used to reduce the effect of hot carriers and to reduce short channel effects
 - After Poly patterning an LDD implant is performed in the active regions
 - Afterwards, a nitride spacer is formed by depositing nitride and etching it
 - The nitride spacer acts as a hard mask for the subsequent implants and protects the LDD region
 - The n+ source/drain is formed by a heavy dose of n+ implant

LDD contd.

Short channel MOSFETs employ thin gate oxides for faster operation

The electric field across the gate oxide should be limited to $1V/10 {\rm \AA}$ to avoid oxide breakdown

- Short channel MOSFETs employ thin gate oxides for faster operation
- \blacksquare The electric field across the gate oxide should be limited to $1V/10 {\rm \AA}$ to avoid oxide breakdown

As the oxide thickness (t_{ox}) scales down, the probability of carriers tunneling through the gate oxide increases

■ leads to gate leakage current

• Gate leakage current increases by an order of magnitude with every node scaling

major concern in VLSI design

High dielectric (Hi-K) gate stacks are employed to increase C'_{ox} while keeping t_{ox} constant

scaling without increase in gate leakage

- As the oxide thickness (t_{ox}) scales down, the probability of carriers tunneling through the gate oxide increases
 - leads to gate leakage current
- Gate leakage current increases by an order of magnitude with every node scaling
 - major concern in VLSI design
 - High dielectric (Hi-K) gate stacks are employed to increase C'_{ox} while keeping t_{ox} constant
 - scaling without increase in gate leakage

- As the oxide thickness (t_{ox}) scales down, the probability of carriers tunneling through the gate oxide increases
 - leads to gate leakage current
- Gate leakage current increases by an order of magnitude with every node scaling
 - major concern in VLSI design
- High dielectric (Hi-K) gate stacks are employed to increase C_{ox}' while keeping t_{ox} constant
 - scaling without increase in gate leakage

Substrate Current Induced Body Effect () (SCBE)

- Hot carriers can cause impact ionization near the drain
 - hole current is generated and flows through the substrate resistance
- The substrate current increases the substrate potential causing V_{THN} shifts, latchup and degradation of transconductance (g_m) and output resistance (r_o) in short channel devices

Substrate Current Induced Body Effect () (SCBE)

- Hot carriers can cause impact ionization near the drain
 - hole current is generated and flows through the substrate resistance
- The substrate current increases the substrate potential causing V_{THN} shifts, latchup and degradation of transconductance (g_m) and output resistance (r_o) in short channel devices

- Occurs at higher drain biases in the off state of a transistor.
 - example, a DRAM cell with "1" stored on the capacitor and the gate is "0"
- Band-to-band tunnelling occurs at the drain and gate-oxide overlap region.
 - decreases retention of charge in a DRAM cell.
- In a logic cell, the subthrehold and junction leakages dominate over GIDL.

- Occurs at higher drain biases in the off state of a transistor.
 - example, a DRAM cell with "1" stored on the capacitor and the gate is "0"
- Band-to-band tunnelling occurs at the drain and gate-oxide overlap region.
 - decreases retention of charge in a DRAM cell.
- In a logic cell, the subthrehold and junction leakages dominate over GIDL.

- Occurs at higher drain biases in the off state of a transistor.
 - example, a DRAM cell with "1" stored on the capacitor and the gate is "0"
- Band-to-band tunnelling occurs at the drain and gate-oxide overlap region.
 - decreases retention of charge in a DRAM cell.
- In a logic cell, the subthrehold and junction leakages dominate over GIDL.