Homework 5

ECE 5/415 — Analog IC Design

Note:

- 1. Use Cadence schematic capture, layout and Spectre simulation tools, available on the servers for the homework problems.
- 2. Unless otherwise stated, use the following MOSFET parameters for hand-calculations. Use the $1 \, \mu m$ CMOS models on the servers for corresponding simulations.

Table 1: Long-channel MOSFET parameters.

Parameter	NMOS	PMOS
Scale factor (L_{min})	$1\mu m$	
V_{DD}	5 V	
V_{THN} and $ V_{THP} $	0.8	0.9
KP_n and KP_p	$120 \frac{\mu A}{V^2}$	$40 \frac{\mu A}{V^2}$
Bias Current, I_D	$20\mu A$	$20\mu A$
g_{mn} and g_{mp}	$150 \frac{\mu A}{V}$	$150 \frac{\mu A}{V}$
$V_{ov} \cong \frac{2I_D}{g_m}$	250mV	250mV
W/L	10/2	30/2
V_{GS} and V_{SG}	1.05V	1.15V
r_{on} and r_{op}	$5M\Omega$	$4M\Omega$
$C'_{ox} = \frac{\epsilon_{ox}}{t_{ox}}$	$1.75 \frac{fF}{\mu m^2}$	
C_{oxn} and C_{oxp}	35 fF	$105 \ fF$
C_{gsn} and C_{sgp}	$23.3 \ fF$	70 fF
C_{gdn} and C_{dgp}	2 fF	6 fF
f_{Tn} and f_{Tp}	900 MHz	300~MHz

Problem 1: Calculate expressions for small-signal differential voltage gain $(A_{v,DM})$ for each of the circuits shown in Figure 1. Use variables g_{m1} , r_{o1} , g_{m2} , r_{o2} , etc. Here, $\lambda \neq 0$ and $\gamma = 0$. No simulations are needed.

Problem 2: Consider the differntial amplifiers (diffamps) shown in Figure 2. For each of these three amplifiers:

(a) Calculate DC voltage at all nodes, and the input common-mode range (ICMR).

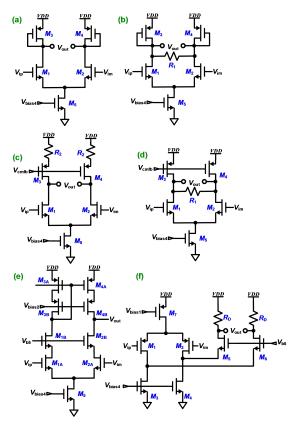


Figure 1

- (b) Estimate differential gain $A_{v,DM}$ (using half-circuit analysis as shown in class), common-mode gain $A_{v,CM}$ (using common-mode equivalent circuit analysis) at low-frequencies, and CMRR in dB.
- (c) Determine the frequency response $\frac{v_{out}}{v_{in}}(s)$ (perform numerical calculations pole-zero locations, and provide neatly hand-sketched Bode magnitude and phase responses). Find the unity-gain frequency (f_{un}) , and phase-margin (Φ_M) for the amplifiers. Note that $f_{un} = \frac{\omega_{un}}{2\pi}$.
- (d) Create schematics and compare Spectre DC and AC simulation results to hand-calculations for: A_{v0} , frequency response, CMRR.
- (e) Plot v_{out} vs v_{in} characteristics by sweeping

the input. Mark ICMR on these plots.

You need to put some thought into how to organize the test-benches. Create a symbol for your individual circuits and use heirarchical schematics for your simulation test-benches.

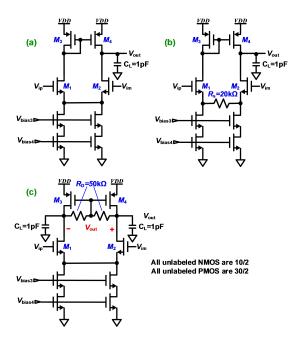


Figure 2