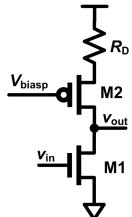
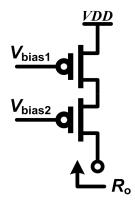
ECE 5/415 Analog Integrated Circuit Design Sample Midterm 1 Oct 10, 2017 Name:

Closed Book, Closed Notes, Closed Computer. Show your steps clearly to get credit. State clearly any assumptions made. This exam has 6 questions, for a total of 100 points.

Use the following transistor parameters for problems in this exam. $V_{DD} = 5$ V and scale factor of $1\mu m$.

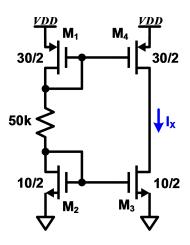

Parameter	NMOS	PMOS
V _{THN,P}	0.8 V	0.9 V
$KP_{n,p}$	$120 \ \frac{\mu A}{V^2}$	$40 \ \frac{\mu A}{V^2}$
$\lambda_{n,p}$	$0.01 \ V^{-1}$	$0.0125 V^{-1}$

- 1. Answer the following parts:
 - (a) (5 points) For an NMOS, sketch g_m vs V_{GS} plot. On this plot, label the g_m corresponding to a fixed gate overdrive voltage V_{ov} .

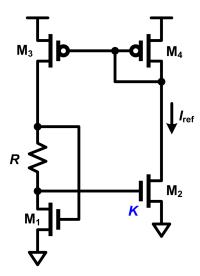

(b) (5 points) Sketch g_m as a function of current (I_D) when the W/L ratio is constant.

(c) (5 points) Explain the temperature behavior of an NMOS transistor using I_D vs V_{GS} curves.

(d) (5 points) Find the small-signal gain of this amplifier in terms of small-signal parameters g_{m1} , r_{o1} , g_{m2} , r_{o2} of the transistors.

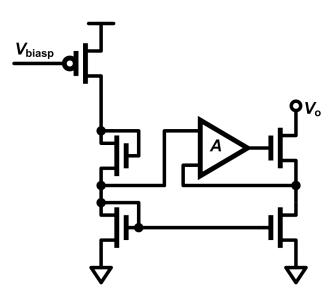


2. (10 points) Define the transition frequency (f_T) for an NMOS and derive an expression for f_T . How does f_T depends on the channel length (L) and the gate overdrive voltage (V_{ov}) ? 3. (a) (5 points) Sketch the circuit(s) used to generate references V_{bias1} and V_{bias2} from a beta-multiplier reference (BMR).



(b) (5 points) Derive an exact expression for the output resistance of the cascode current source seen above.

 $4.\ (20\ {\rm points})\ {\rm Calculate}\ {\rm all}\ {\rm the}\ {\rm DC}\ {\rm voltages}\ {\rm and}\ {\rm currents}\ {\rm in}\ {\rm the}\ {\rm circuit}\ {\rm shown}\ {\rm below}.$



5. Consider the beta multiplier reference (BMR) circuit shown in the figure below.

- (a) (10 points) Derive expressions for I_{ref} , V_{GS_1} and g_{m1} . Note that M2 is K times wider than M1.
- (b) (5 points) Draw the schematic for a start-up circuit for this BMR.
- (c) (5 points) Modify this circuit to make it suitable for short-channel design.

6. Consider the regulated drain current mirror shown below.

- (a) (3 points) Assign the positive and negative terminals on the amplifier to ensure overall negative feedback.
- (b) (7 points) Label all the nodes in the circuits in terms of $V_{DS,sat}$ and V_{THN} . What is the allowable range for the voltage V_o ?
- (c) (10 points) Derive an expression for the output resistance of this current mirror.

(d) (0 points) Bonus: Sketch the PMOS and wide-swing version of this circuit.