ECE 415/515 –ANALOG INTEGRATED CIRCUIT DESIGN

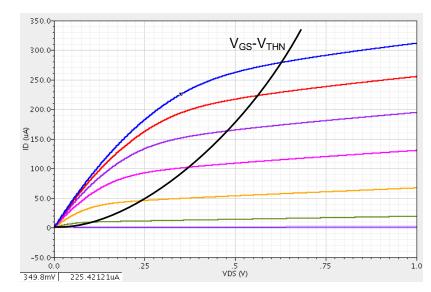
CMOS PROCESS CHARACTERIZATION

VISHAL SAXENA VSAXENA@UIDAHO.EDU

© Vishal Saxena

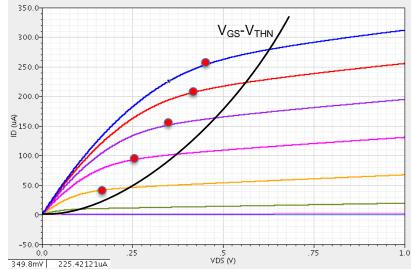
DESIGN PARAMETERS

- Analog circuit designers care about:
 - Open-loop Gain: g_mr_o
 - Bandwidth (speed): C_{gs} , C_{gd} , f_{T} , f_{max} , etc.
 - Power: V_{DD}*I_{DD}
 - Voltage swing: V_{DS,sat}
 - Noise
 - Linearity
 - Mismatch (systematic and random)
- Layout Engineers care about:
 - W/L sizing, layout matching, circuit isolation,....

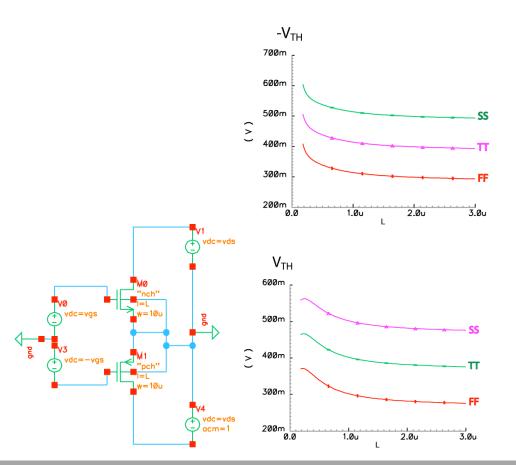

SHORT CHANNEL CHARACTERISTICS

- Square law equations are no longer valid
 - Intuition derived from classical analysis is still helpful
 - $i_D = v_{sat}WC_{ox}(V_{GS}-V_{THN}-V_{DS,sat})$
 - v_{sat}=saturation velocity
 - Cox=oxide capacitance per unit area
 - Velocity saturation and overshoot effects
- Current analog technology is 14nm, typical designs in 65nm
 - Requires NDA agreements
- CMOS Book uses 50nm process parameters
 - V_{DD}=1V, L_{min}=50nm
 - V_{THN}=V_{THP}=280mV

SHORT CHANNEL CHARACTERISTICS (2)


- Short-channel devices appear to enter saturation as a lower voltage than predicted by the equation $V_{DS,sat}=V_{GS}-V_{THN}$
 - $V_{DS,sat} \neq V_{ov} = V_{GS} V_{THN}$
 - The actual inversion layer charge distribution, $Q'_{I}(y)$, is a function of V_{DS} , in addition to V_{GS}
 - $Q_{I}^{'}(y)$ becomes zero at a lower $V_{DS,sat}$

SHORT CHANNEL CHARACTERISTICS (3)

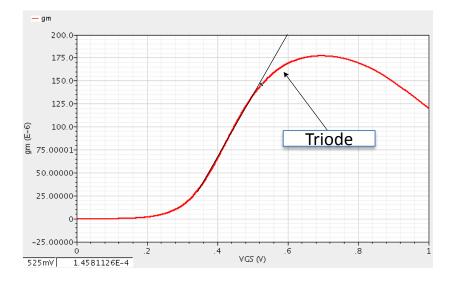

- Is a large range for the saturation region beneficial?
 - We could really use the larger swing!
- Not really, need to look at the region where r_o is large and that occurs when the device is deep into saturation :(

THRESHOLD VOLTAGE

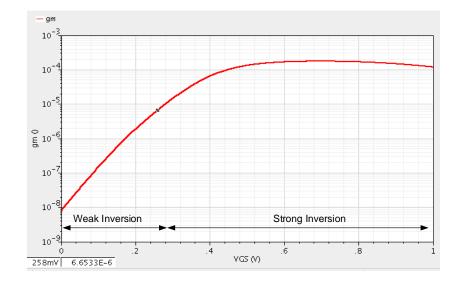
- Strong function of L
 - Use long channel for V_{TH} matching
- Process variations
 - Run-to-run ~100mV
 - Slow/nominal/fast
- Good design should be insensitive to the absolute value of V_{TH}
 - Should only depend upon the mismatch in V_{TH} (~1mV) for good layout and large devices

University of Idaho College of Engineering

SHORT CHANNEL CHARACTERISTICS

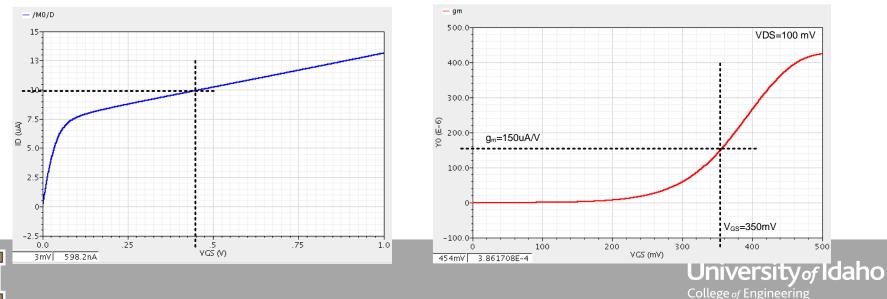

- For short-channel design, the equation $V_{DS,sat}=V_{GS}-V_{THN}$ is meaningless
- From now onwards, we'll talk in terms of the gate overdrive voltage
 - $V_{ov} = V_{GS} V_{THN} > V_{DS,sat}$
- We can use $V_{ov} = 5\%$ of V_{DD} as a starting point for high-speed design (build your intuition)
- Vov = 70mV!
 - VGS = 350mV
- A more robust method is to use constant g_m/I_D and current density (I_D/W) across the design, instead of a constant V_{ov}
 - Refer to the slides "Analog Design Using g_m/I_d and f_t Metrics" by Prof. Boser of UC Berkeley

University of Idaho

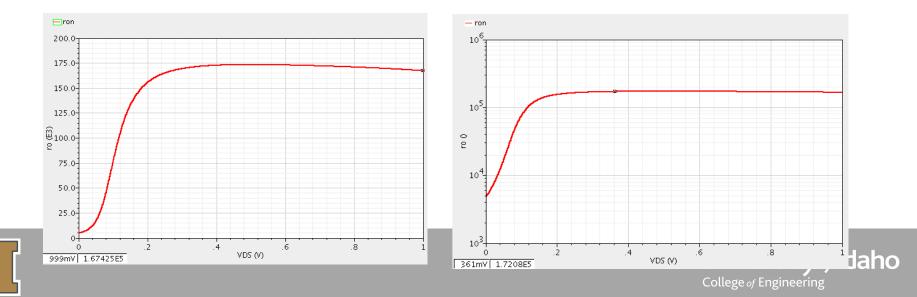

College of Engineering

TRANSCONDUCTANCE

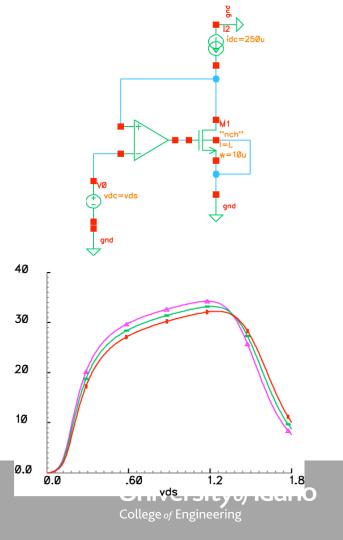
 $g_m = (V_{GS} - V_{THN})$


gmsub-VT=ID/NVT

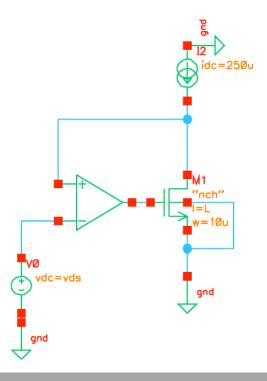
TRANSCONDUCTANCE


- Given $V_{ov}=2I_D/g_m$, and a specified value of g_m
- Pick I_D and W based on
- Here, for a g_m =150uA/V, we pick 10uA for sufficient current drive
- This leads to W=50 for NMOS and W=100 for PMOS

OUTPUT RESISTANCE


- To determine $V_{DS,sat}$, look at the point where the output resistance starts to increase (Here, $V_{DS,sat} = 50mV$)
- We get considerably higher output resistances at a larger VDS(important!)

Can't just model by a simple equation, $r_o = 1/I_{D,sat}$


OPEN-LOOP GAIN $(g_m r_o)$

- g_mr_o is more useful than just r_o
 - Represents maximum attainable gain from a transistor
- Simulation Notes:
 - Bias current *idc* sets V_{ov}
 - Use feedback to find the correct V_{GS} while sweeping V_{DS}
 - Use relatively small error-amplifier gain (A=100) for fast DC convergence

OPEN-LOOP GAIN $(g_m r_o)$

- The open loop gain is roughly $g_m r_o = 150 \mu AV \cdot 170 k$ ~25
- Considerably lower than the open-loop gain in a long-channel process.

University of Idaho College of Engineering

LONG-CHANNEL CMOS, L_{MIN} =1UM

 Table 9.1 Typical parameters for analog design using the *long-channel* CMOS process discussed in this book. Note that the parameters may change with temperature or drain-to-source voltage (e.g., Fig. 9.24).

<i>Long</i> -channel MOSFET parameters for general analog design <i>VDD</i> = 5 V and a scale factor of 1 μ m (<i>scale</i> = 1e–6)			
Parameter	NMOS	PMOS	Comments
Bias current, I_D	20 µA	20 µA	Approximate
W/L	10/2	30/2	Selected based on $I_{\rm D}$ and $V_{\rm DS,sat}$
$V_{\rm DS,sat}$ and $V_{\rm SD,sat}$	250 mV	250 mV	For sizes listed
V_{GS} and V_{SG}	1.05 V	1.15 V	No body effect
$V_{T\!H\!N} {\rm and} V_{T\!H\!P}$	800 mV	900 mV	Typical
$\partial V_{THN,P} / \partial T$	-1 mV/C°	$-1.4 \text{ mV/C}^{\circ}$	Change with temperature
KP_n and KP_p	$120 \ \mu A/V^2$	$40 \ \mu A/V^2$	$t_{ox} = 200 \text{ Å}$
$C'_{ox} = \varepsilon_{ox}/t_{ox}$	$1.75 f \mathrm{F/\mu m^2}$	$1.75f\mathrm{F/\mu m^2}$	$C_{ox} = C'_{ox}WL \cdot (scale)^2$
C_{oxn} and C_{oxp}	35 <i>f</i> F	105 <i>f</i> F	PMOS is three times wider
$C_{\scriptscriptstyle gsn} \text{ and } C_{\scriptscriptstyle sgp}$	23.3 <i>f</i> F	70 <i>f</i> F	$C_{gs} = \frac{2}{3}C_{ox}$
$C_{\mathit{gdn}} \text{ and } C_{\mathit{dgp}}$	2fF	6 <i>f</i> F	$C_{gd} = CGDO \cdot W \cdot scale$
g_{mn} and g_{mp}	150 µA/V	150 μA/V	At $I_D = 20 \ \mu A$
r_{on} and r_{op}	5 ΜΩ	4 MΩ	Approximate at $I_D = 20 \ \mu A$
$g_{mn}r_{on}$ and $g_{mp}r_{op}$	750 V/V	600 V/V	Open circuit gain
λ_n and λ_p	0.01 V ⁻¹	0.0125 V^{-1}	At <i>L</i> = 2
f_{Tn} and f_{Tp}	900 MHz	300 MHz	For $L = 2$, f_T goes up if $L = 1$

fldaho

Figures from CMOS Circuit Design, Layout, and Simulation, Copyright Wiley-IEEE, CMOSedu.com

SHORT-CHANNEL CMOS, L_{MIN} =50NM

Short-channel MOSFET parameters for general analog design VDD = 1 V and a scale factor of 50 nm (scale = 50e-9) Parameter NMOS PMOS Comments Approximate, see Fig. 9.31 Bias current, ID 10 uA 10 uA W/L50/2100/2Selected based on I_D and V_{av} $5\mu m/100nm$ Actual W/L 2.5µm/100nm L_{min} is 50 nm $V_{DS,sat}$ and $V_{SD,sat}$ 50 mV50 mVHowever, see Fig. 9.32 and the associated discussion Vom and Vov 70 mV70 mV V_{GS} and V_{SG} 350 mV350 mVNo body effect 280 mV280 mV Typical V_{THN} and V_{THP} $\partial V_{THNP} / \partial T$ $-0.6 \text{ mV/C}^{\circ}$ - 0.6 mV/C° Change with temperature $110 \ge 10^3 \text{ m/s}$ $90 \ge 10^3 \text{ m/s}$ From the BSIM4 model v_{sam} and v_{sam} 14 Å 14 Å Tunnel gate current, 5 A/cm² t_{ar} $C'_{ox} = \varepsilon_{ox}/t_{ox}$ $25 f F/\mu m^2$ $25 f F/\mu m^2$ $C_{ox} = C'_{ox}WL \cdot (scale)^2$ PMOS is two times wider C_{oxp} and C_{oxp} 6.25 f F 12.5 f F $C_{gs} = \frac{2}{3}C_{ox}$ C_m and C_sep 4.17 fF 8.34 fF $C_{gd} = CGDO \cdot W \cdot scale$ 1.56 f F 3.7*f* F C_{edn} and C_{den} $150 \ \mu A/V$ g_{mn} and g_{mp} 150 µA/V At $I_D = 10 \ \mu A$ 167 kΩ 333 kΩ Approximate at $I_D = 10 \ \mu A$ ron and rov 25 V/V 50 V/V !!Open circuit gain!! gmmron and gmprov $0.6 V^{-1}$ $0.3 V^{-1}$ L = 2 λ_n and λ_n f_{T_n} and f_{T_n} 6000 MHz 3000 MHz Approximate at L = 2

 Table 9.2 Typical parameters for analog design using the *short-channel* CMOS process discussed in this book. These parameters are valid only for the device sizes and currents listed.

Figures from CMOS Circuit Design, Layout, and Simulation, Copyright Wiley-IEEE, CMOSedu.com

© Vishal Saxena

BMR CIRCUIT IN 1UM CMOS

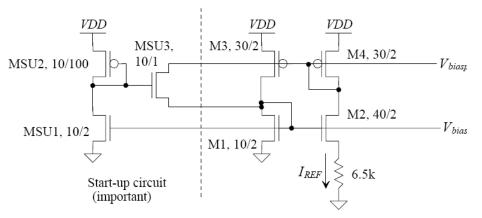


Figure 20.15 Beta-multiplier reference for biasing in the long-channel process described in Table 9.1.

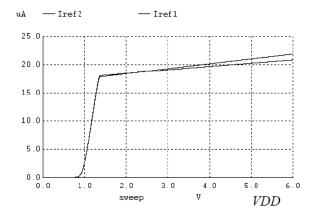


Figure 20.16 The reference currents through M1 and M2 in the Beta-multiplier.

Figures from CMOS Circuit Design, Layout, and Simulation, Copyright Wiley-IEEE, CMOSedu.com

Γ

© Vishal Saxena

University of Idaho College of Engineering