Project 1

ECE 5/413 - RF IC Design

1 Problem Statement

LNA Design: Your company wants to enter the new 28GHz mmWave wireless market and you are tasked to design a single-ended low-noise amplifier for the product. You may choose any suitable circuit topology or number of stages. The LNA should meet the following specifications in the 90nm CMOS technology:

Parameter	Value
Technology	90nm CMOS
Supply voltage, V_{DD}	1.2V
Input impedance, R_{in}	50Ω
Frequency range	26.5-29.5 GHz
S ₁₁	< -15 dB
S ₁₂	< -35 dB
Power gain	$\geq 8 dB$ over the whole band
On-chip load (a mixer)	100 fF
NF	< 4dB
IIP_3	$\geq -5dBm$
$FoM = \frac{G_p \cdot IIP_3 \cdot f}{(F-1) \cdot P}$	Maximize

Table 1: LNA design specifications.

• Ideal inductors are not allowed in the final design. Use the scalable inductor model provided on the server. The models are usually extracted using an electromagnetic simulator.

2 Report

Submit your neatly typed report as a **PDF** file (*Lastname_ECEx13_Project1_Report.pdf*). The report will include:

- Neatly drawn schematics with transistor sizes, bias currents, inductors and their equivalent circuit.
- Preliminary hand-calculations based on simulated transistor parameters.
- You may copy the test benches from the instructor. Simulation results of the main specification parameters at $25^{\circ}C$ with 1.2 V supply. At the minimum, plot the following:
 - $-S_{21}$ and G_{max} in dB scale.
 - $-\ S_{22}$ and S_{11} on the same plot and scale in dB
 - Input impedance (real and imaginary parts of parameter ZM_1 from sp analysis)

- NF and NF_{min} in dB
- Plot P_{1dB} and IIP_3 separately using a harmonic balance simulation setups.
- Show the overall LNA design performance with the FoM in a neatly tabulated manner along with the conclusion.
- For Grad Students only: Simulate NF, S_{11} , S_{22} and S_{21} at $125^{\circ}C$ with 1.0 V supply. Comment on the results.

You can download the Visio schematic symbols from the course website [3]. Provide relevant references in your report.

3 Academic Honesty

You are expected to come up with your original design schematics. No circuits can be shared or copied from other student(s).

4 Grading Scheme

Design choices and justification	30%
Functionality and performance	30%
Design characterization and presentation of results	30%
Report presentation and clarity	10%

References

- T. Johansson, "LNA Simulation using Cadence SpectreRF," RF IC Design 2018, Linkoping University [Online].
- [2] Cadence SpectreRF Workshop: LNA Design Using SpectreRF [Online].
- [3] Visio Schematic Symbols. Available [Online].