Homework 4

ECE 5/413 - Radio Frequency IC Design

Note:

1. Use the 45nm GPDK CMOS with $V_{DD} = 1.1V$ on the ECE servers for design problems.

Problem 1: Impedance Match

- 1. Design an L-match network to match a $R_L = 10\Omega$ load to a $R_s = 50\Omega$ source. Assume that the center frequency is $f_0 = 2.4GHz$.
- 2. As you know that L-match has only twodegrees of freedom where the impedance transformation ratio and center frequency is specified. Redo part (1) using a π -match network with an additional constraint that the total bandwidth of the match is BW = 20MHz.
- 3. Simulate the above two networks in Cadence Spectre and plot $|S_{11}|$ and $|S_{21}|$ (in dB scale) with labeled center frequency and bandwidth. Compare the BW and resulting Q from these plots with your handcalculations.

You can copy example testbenches by adding the line¹ to your cds.lib file in the ece513 directory.

Problem 2: RLC Circuits

Consider the network shown in Fig. 1. Using the method of series-parallel transformations, simplify the network to find the impedance at 100MHz when C = 1pF, L = 10nH, $R_s = 15\Omega$ and $R_p = 1k\Omega$.

A 32-nm CMOS technology has the following transistor data (**Note:** ' denotes per unit width): $L = 22nm, J_{OPT} = 0.3 \frac{mA}{\mu m}$ $J_{pfT} = 0.5 \frac{mA}{\mu m} \text{ for } 0.3V < V_{DS} < 0.9V.$ $g'_{mn} = g'_{mp} = 2.6 \frac{mS}{\mu m}$ $g'_{on} = g'_{op} = 0.4 \frac{mS}{\mu m}$ For both NMOS and PMOS devices: $C'_{gs} = 0.55 \frac{fF}{\mu m}; C'_{gd} = 0.3 \frac{fF}{\mu m}$ $C'_{ab} = C'_{ab} = 0.55 \frac{fF}{F}$

Problem 3: Transistor FoM Calculations:

$$C_{sb} = C_{db} = 0.55 \frac{1}{\mu m}$$

 $R_s = R_d' = 200 \,\Omega \times \mu m$

Total R_g with finger contacted on one side is $96\Omega \times \mu m$.

Noise parameter: $k_1 = 0.5$.

- 1. Calculate the f_T and f_{MAX} of the NMOS and PMOS transistors using the small signal equivalent circuit parameters. **Hint:** Textbook Eqs. 4.124 & 4.125, and set $R_i = 0$. You don't need to know the NMOS width as ' μm ' cancels out in the expressions.
- 2. Calculate the corresponding f_T of the NMOS cascode stage. *Hint:* Substitute $2C_{gd}$ instead of C_{gd} in the first term in Eq. 4.124 to account for Miller effect in the bottom NMOS.
- 3. Assuming the NMOS transistor is biased at J_{OPT} and the finger width is $W_f = 1\mu m$, what is the total gate width $(N_f \cdot W_f)$ and bias current (I_D) of an NMOS whose R_{sOPT} is 50 Ω at 140 GHz? What is the corresponding R_n ? *Hint:* From Eq. 4.53:

$$\begin{split} R_{sOPT} &\approx \frac{f_T}{fWg'_{meff}} \sqrt{\frac{g'_m(R'_s + W_f R'_g(W_f))}{k_1}} \\ \text{where } g'_{meff} = \frac{g'_m}{1 + g_m R_s}, \text{ and} \\ R_n &\approx \frac{R'_g}{N_f W_f} + \frac{R'_s}{N_f W_f} + \frac{k_1}{g'_m \cdot N_f W_f}, \end{split}$$

- 4. Calculate NF_{min} (in dB) for the transistor in part (3) for f = 2.4GHz, 28GHz, 60GHz and 140GHz. *Hint:* Textbook Eq. 4.55.
- 5. Calculate the intrinsic slew-rate of the NMOS and PMOS transistors given by $SL_i = \frac{J_{pf_T}}{C'_{cd} + C'_{db}}$ in terms of $\frac{V}{ps}$.

Problem 4: RF Transistor Characterization: Setup your Cadence environment using directions provided in the wiki. Copy the library with simulation testbenches by adding the line² to your cds.lib. Using the standard 1V transistors in the 45nm CMOS GPDK with sizes of $\frac{W}{L} = \frac{120nm \times 5}{45nm}$:

- 1. Generate I_D - V_{GS} and I_D - V_{DS} plots for NMOS and PMOS.
- 2. Plot $\frac{g_m}{W}$ vs V_{GS} as in Textbook Fig. 4.36. Comment on the plot. Hint: g_m is obtained by deriv (I_D) vs V_{GS} plot using Tools \rightarrow Calculator in ADE-L.
- 3. Plot C_{gs} and C_{gd} vs V_{GS} as in Textbook Fig. 4.43. Also, plot C_{gs} and C_{gd} vs V_{DS} for $V_{GS} = 0.7V$ (Fig. 4.44).
- 4. The testbenches are designed to sweep current density $J_D = \frac{I_D}{W}$ and plot f_T , f_{MAX} and $NF_{min}@50GHz$ for the NMOS. You will also find the example Tools \rightarrow Parametric Analysis files used for sweeping variables in the *rficdesign* directory. R_g is modeled using Eqn. 4.109 from the book. Plot f_T and f_{MAX} as functions of current density J_D , and find J_{pf_T} and $J_{pf_{MAX}}$ for the technology. See Textbook Figs. 4.62-4.65.
- 5. Plot NF (in dB) vs J_D and find J_{OPT} and NF_{min} for the NMOS at 5GHz, 28GHz and 60GHz. See Textbook Fig. 4.66. Comment on the trends.
- 6. Why is constant current density (J_D) method for MOSFET sizing preferred over other schemes such as using a fixed V_{GS} ? *Hint:* Read Textbook Sections 4.2.8 and 9.

 $\mathbf{2}$