Homework 3

ECE 5/413 - Radio Frequency IC Design

Problem 1: Noise Measure

- 1. Consider an infinite cascade of idential twoports with individual noise factor F_i and power gain G_i . Show that the overall noise factor F of the infinite cascade of identical two-ports converges to $F = 1 + \frac{F_i - 1}{1 - \frac{1}{d_i}}$.
- 2. A quantity **noise measure** M is now defined as $M_i = \frac{F_i 1}{1 \frac{1}{G_i}}$. Prove that if you have two amplifiers with F_1 , G_1 and F_2 , G_2 , it is always better to put the amplifier with lower noise measure first in a cascade. **Hint:** Start with $M_1 < M_2$
- 3. A single-stage LNA has $NF_{min} = 1.4dB$ and G = 7dB. By using some circuit tricks the noise figure has improved to $NF_{min} = 1.2dB$ and G = 5dB. Show that the noise measure hasn't changed.

and show that $F_{1-2} < F_{2-1}$.

4. Repeat **HW2 Problem B1** to find the order of cascade for the least overall noise figure using the noise measure concept (ignore IIP_3 calculations).

Problem 2: Link Budget

A wireless link is to be designed for your future home theatre system operating at 60GHz. The link employs 16-QAM modulation over a line-ofsight distance of 10m and transmits at a rate of 4Gbps occupying a bandwidth of 1GHz. Calculate the minimum transmitter power P_{TX} needed for a link margin of 22dB at the receiver.

The receiver noise figure is NF = 7dB, and the transmit and receive antenna gains are $G_{TX} = G_{RX} = 8dBi$ each. The SNR required for the 16-QAM modulator for a BER= 10^{-6} is 21dB.

Problem 3: Calculate the rms noise at room temperature (293K) for :

- 1. Resistors (a) $R = 50\Omega$ and (b) $R = 10k\Omega$ over a bandwidth of 1 MHz.
- 2. RC low-pass filters with $R = 1k\Omega$, (a) C = 0.1pF and (b) C = 10pF.