Mixer Design Methodology

Vishal Saxena

University of Idaho

11/04/2018

Mixer Specifications

- RF, LO, IF frequencies
- Conversion (power) gain
- Linearity
- Noise Figure (receive/downconversion mixers only)
- Isolation

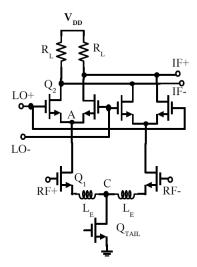
Receive (down-converter) mixer topology

- Doubly balanced
- Good for MOS, BJT and BiCMOS
- ▶ RF (low-noise) linear input amplifier + mixing quad
- RF signal applied to bottom pair
- LO signal applied to mixing quad
- IF LPF output
- LO and or RF trap at IF output
- Image rejection must be placed before mixing quad or built into the topology.

Transmit (up-converter) mixer topology

- Doubly balanced
- MOS, BJT and BiCMOS
- IF linear input amplifier + mixing quad
- IF signal applied to bottom pair
- LO signal applied to mixing quad
- RF BPF (tuned) output at top
- Image rejection must be placed after mixing quad or built into the topology

Mixer Figure of Merit


► In the downconversion mixers, maximize the linearity (*IIP*₃ or *IIP*₂), increase the conversion gain and decrease the NF and power dissipation

$$FoM_{downconverter} = \frac{IIP_3G_cIS_{LO-RF}f}{(F_{SSB} - 1)P_{DC}P_{LO}}$$

▶ For an upconverter, maximize the linearity (*OP*_{1dB}), increase the conversion gain and decrease the power dissipation

$$FoM_{upconverter} = \frac{G_c OP_{1dB} IS_{LO-RF} f^2}{P_{DC} P_{LO}}$$

Gilbert Mixer with Degeneration

Design Methodology for Downconverters (1)

Step 1: If the mixer has conversion gain, set the DC voltage drop V_{RL} on the IF load resistors R_L (if present) and the V_{DS} of the mixing quad transistors to satisfy the desired peak-to-peak output linear voltage swing V_{OMAX}

$$V_{RL} = \frac{V_{OMAX}}{2} = V_{DS} - V_{DS,SAT} = \frac{I_{TAIL}R_L}{2}$$

Step 2: Set the bias current density of the transistors in the transconductor pair to J_{OPT}. Following condition must be satisfied:

$$W_1 = \frac{I_{D1}}{J_{OPT}} = \frac{I_{TAIL}}{2J_{OPT}}$$

Design Methodology for Downconverters (2)

 Step 3: Set the bias current density of the mixing quad transistors for maximum switching speed Jpf_T/2 for MOSFETs. Following condition must be satisfied:

$$W_2 = \frac{I_{TAIL}/4}{J_{pf_T}/2} = \frac{I_{TAIL}}{2J_{pf_T}}$$

 This step fixes the size ratio of the transconductor W₁ and mixing quad transistors (W₂) to

$$\frac{W_2}{W_1} = \frac{J_{OPT}}{J_{pf_T}} \approx 0.5$$

for MOSFETs

Design Methodology for Downconverters (3)

► Step 4: Size (i.e. find W₁) the transistors in the RF transconductor for the desired R_{SOPT} as the desired RF frequency f_{RF}. The source impedance is the LNA output impedance. For a differential mixer

$$R_{out}|_{LNA} = R_{SOPT}|_{mixer} \approx \frac{2f_{Teff}}{f \cdot g_{meff}^{'} W_1} \sqrt{\frac{g_m^{'}(R_s^{'} + W_f R_g^{'}(W_f))}{k_1}}$$

where f_{Teff} and g'_{meff} are for the cascode stage of the transconductor, when the bottom transistors is biased at J_{OPT}

Design Methodology for Downconverters (4)

At this stage, the sizes of all transistors in the transconductor and the mixing quad, and the tail current source are fixed

$$W_{1} = N_{f1} \cdot W_{f} = \frac{2f_{Teff}}{f_{RF} \cdot g'_{meff}R_{out}|_{LNA}} \sqrt{\frac{g'_{m}(R'_{s} + W_{f}R'_{g}(W_{f}))}{k_{1}}}$$

Design Methodology for Downconverters (5)

Step 5: Add inductive source degeneration L_S to satisfy the linearity target (more important than noise and conversion gain). If the mixer is designed for noise matching, the linearity is given by

$$IIP_{2} \propto \frac{f_{RF}g_{m}R_{out}|_{LNA}}{f_{Teff}}$$
$$L_{S} = \frac{R_{out}|_{LNA}}{2\pi f_{Teff}}$$

- ► Step 6: Add inductor L_G in series with the gate of M₁ to tune out the imaginary part of the input impedance.
- Step 7: The LO swing must be large enough to fully switch the mixing quad, yet not too large to cause the transistors in the quad to exit the active region.
 - Typical swing is 400 500mV_{pp} per side in 65nm and 90nm CMOS mixing quads.

Design Methodology for Upconverters (1)

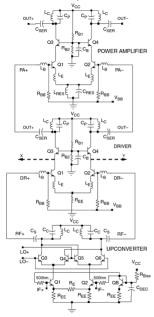
• Step 1: If the mixer has conversion gain, set the swing on the resonant load resistors R_P (which includes the transistor r_o) at the RF output and the V_{DS} of the mixing quad transistors to satisfy the peak-to-peak linear output voltage condition

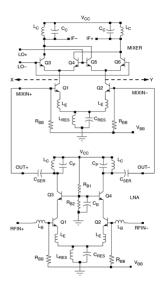
$$V_{OMAX} = 2(V_{DS} - V_{DS,SAT}) = I_{TAIL} \cdot R_P \tag{1}$$

- ► I_{TAIL} is set by the power budget (V_{DD} · I_{TAIL}) allocated to the upconverter but can be decoupled from the output swing and gain condition.
- ▶ When designing for the minimum power consumption, the smallest possible *I_{TAIL}* results from Eq. 1 with *V_{OMAX}* given as a design specification and the maximum realizable *R_P* ar *f_{RF}* being a technology constant.

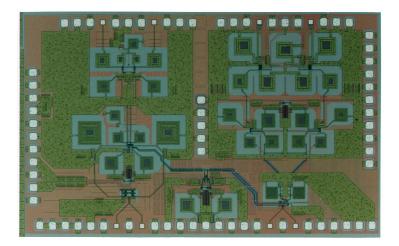
Design Methodology for Upconverters (2)

► Step 2: Set the bias current density of the transistors in the transconductor pair to J_{pf_T}. This fixes transistor size to

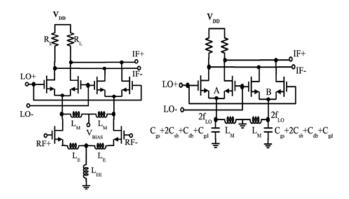

$$W_1 = \frac{I_{TAIL}R_L}{2J_{pf_T}}$$


► Step 3: Set the bias current density of the mixing quad transistors for maximum switching speed Jpf_T/2 for MOSFETs. The quad transistor size becomes

$$W_2 = \frac{I_{TAIL}R_L}{2J_{pf_T}} = W_1$$

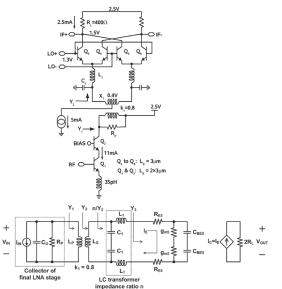

Step 4: Add resistive source degeneration R_S to meet linearity target IIP₃ ∝ R_S · I_{TAIL}

Example: 5GHz Up/Downconverter Mixers



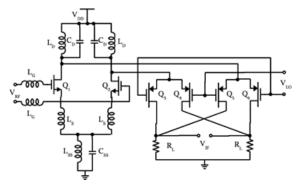
Example: 5GHz Up/Downconverter Mixers

Gilbert Mixer with Inductive Broadbanding

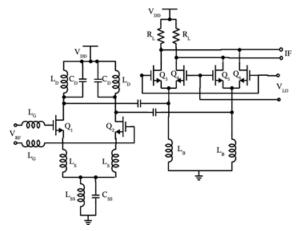


Low Voltage Mixer Topologies (1)

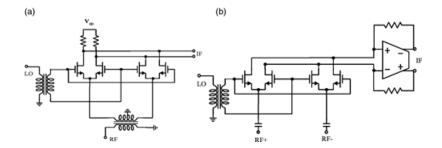
- Despite of many advantages, conventional Gilbert mixer has shortcomings.
 - Vertical stacking of at least two high-frequency path transistors between supply and ground.
 - Makes operation challenging with/below 1.2V CMOS.
- Over the years, several topologies have been proposed.
 - Idea is to have only one high-frequency transistors between supply and ground (along with the load).


Low Voltage Mixer Topologies (2)

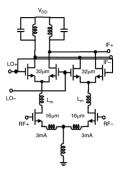
Gilbert cell mixing quad with transformer coupling of RF signals.


Low Voltage Mixer Topologies (3)

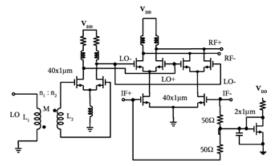
Folded Gilbert cell with PMOS as the switching quad.


Low Voltage Mixer Topologies (4)

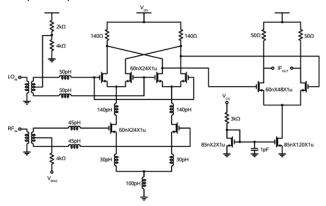
► Folded Gilbert cell with NMOS as the switching quad.


Low Voltage Mixer Topologies (4)

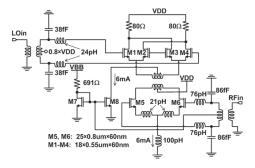
- Passive FET mixer where mixing quad consists of zero-biased FET switches which don't consume DC power.
 - Has high IIP3 but suffers from high-conversion loss, high LO power and high NF.
 - Transformer and/or AC coupling of RF and IF signals.
 - ▶ LO and RF ports can be interchanged.


Example: 60GHz Downconverter in 90nm CMOS

- ► Gilbert mixer topology with 1.2V supply; tight headroom.
- Common-mode resistor replaced by a 70pH inductor to relax headroom; 140pH broadbanding inductors to increase gain and NF.
- Transconductor biased at $J = 0.18 \frac{mA}{\mu m}$.
- Output is a low-Q resonant tank; BW of 3.5-5GHz.
- Downconversion gain is 2-3dB.


Example: 60GHz Upconverter in 90nm CMOS

- Using topology similar to the previous example.
- Large output power and linearity are the main concern.
- All transistors biased at $J = 0.3 \frac{mA}{\mu m}$ with $W = 40 \mu m$.
- IF input is broadband from DC to 6GHz and driven directly from off-chip 50Ω resistors.
- Upconversion gain is -6dB.
- Inductive broadbanding is not employed since its efficacy is in the IF path.


70-100GHz Downconversion (DN) Mixer in 65nm CMOS

- The DN example shown two slides earlier was scaled from 60GHz to 90GHz and ported to 65nm and 45nm CMOS.
 - Entire mmWave circuits are salable across frequency and technology nodes.
- ▶ $J = 0.18 \frac{mA}{\mu m}$. Measured DN gain was 4dB with NF=8dB.
- Mixer is noise-impedance matched through a 1:1 xfmr to the LNA output impedance of 75*O*Ω.

140GHz Transformer-coupled DN Mixer in 65nm CMOS

- Inductive degeneration is implemented with 21pH inductors and 100pH in the common-mode on the RF path.
- Xfmrs with 1:1 turn ratio placed at the RF and LO ports for single-ended to differential conversion, and between G_m and mixing quad.
- ▶ Both G_m and mixing quad pair draw 6mA. G_m pair is biased at $J = 0.18 \frac{mA}{\mu m}$ for lowest NF.

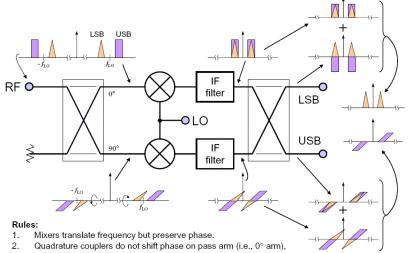


Image-Reject and SSB Mixer Topologies (1)

- Mixer rejects IM signal without the need for image-reject filter.
- Need two 90° hybrid couplers and an in-phase power splitter or adder (combiner).
- Three possible topologies depending upon which mixer port the 90° hybrids are placed.
- Topology suitable for image-reject downconverters is shown on the next slide.

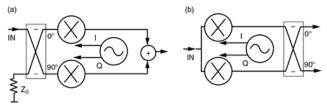
Image-Reject and SSB Mixer Topologies (2)

Pictorial Operation of Quadrature (Image-Rejection) Mixer

but give 90° phase shift through cross arm (i.e., 90° arm).

Image-Reject and SSB Mixer Topologies (3)

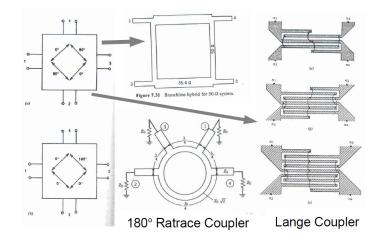
- The first 90° hybrid splits the phase of the incoming RF signal and mixes it with the LO.
- The two IF outputs are then low-pass filtered and combined by the second 90° hybrid coupler.
- Provides lower sideband (LSB) and the upper sideband (USB) signals at separate ports.


$$v_{LSB} = \frac{A_C V_{LO} V_L}{2} cost(\omega_{IF} t)$$

$$v_{USB} = \frac{-A_C V_{LO} V_U}{2} sin(\omega_{IF} t)$$

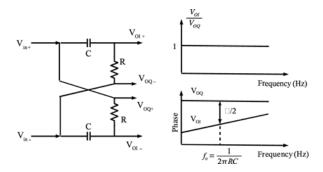
See notations and derivations in the textbook.

mmWave Image-Reject Mixer Topologies


Two other image-reject and SSB mixers are possible, if a quadrature VCO is employed instead of the second hybrid.

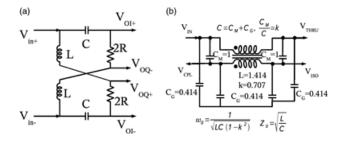
(a) Single-side band modulator, and (b) image-reject mixer topologies based on quadrature VCOs.

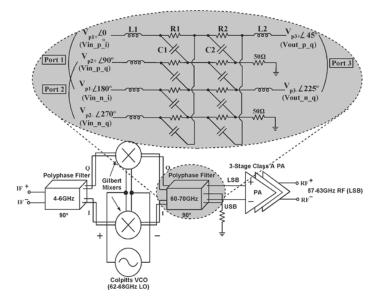
Broadband 90° and 180° Hybrid Couplers


- \blacktriangleright Need 90° and 180° hybrid couplers.
 - ▶ 90° coupler: Lange or branchline
 - ▶ 180° coupler: ratrace (Marchand) balun
 - In-phase Wilkinson splitter.

Lumped 90° RC Phase Shifter

▶ 90° RC phase shifter, also called polyphase shifter.


- Constant phase difference vs frequency or constant amplitude vs frequency possible, but not with both.
- To increase bandwidth, several cascaded filter sections with staggered center frequencies are typically employed.


LRC Polyphase Filter and Lumped 90° Hybrid Coupler

- Improved quadrature all-pass filter employs inductors to extend the bandwdith over which the 90° phase shift is maintained with little amplitude imbalance.
- The transfer function is described by

$$\begin{bmatrix} V_{OI\pm} \\ V_{OQ\pm} \end{bmatrix} = \begin{bmatrix} \frac{\pm s^2 + 2\frac{\omega_0}{Q}s - \omega_0^2}{s^2 + 2\frac{\omega_0}{Q}s - \omega_0^2} \\ \frac{\pm s^2 - 2\frac{\omega_0}{Q}s - \omega_0^2}{s^2 + 2\frac{\omega_0}{Q}s - \omega_0^2} \end{bmatrix}$$

60-70GHz Two-Stage LRC Polyphase Filter in a SSB WLAN SiGe TX

References

 S. Voinigescu, "High-Frequency Integrated Circuits," The Cambridge RF and Microwave Engineering Series, 1st ed., 2013.