

Spectral Correlation Function based Convolutional

Neural Networks for Radio Modulation Detection
(Final Project for ECE 504, Fall 2017)

Md Jubayer Shawon*, John Chiasson, Vishal Saxena

ECE Department, University of Idaho

875 Perimeter Dr, Moscow, ID 83844

Abstract—In this project, a convolutional neural network has

been designed to recognize modulation type in a complex-valued

temporal radio signal. The network has been trained using

RadioML dataset [1]. However, the data was not directly used to

train the network. The data has been preprocessed by

implementing Spectral Correlation Function (SCF) [2-4] and

Max-normalization. Prior to proposing a final design, several

network architectures have been investigated, and the

architecture with the best performance on the test data has been

chosen. The final design takes in 4096 inputs and has 11 outputs

(corresponding to 11 modulations available in the data set).

Keywords—Convolutional Neural Networks; Modulation

Detection; Spectral Correlation Function

I. INTRODUCTION

In recent years, demand for massive data traffic in the
wireless communication channels has sparked the need for
better and more efficient radio spectrum analysis with high
degree of automation and optimization. A small yet very
important part of meeting such demands is to detect
modulation type of a received signal with high level of
accuracy. Therefore, for this current project, a neural network
has been proposed and implemented to classify modulation
schemes used in the received signal using Convolutional
Neural Network (CNN) [5].

II. THE DATASET

A. RadioML 2016.10

For this project, the dataset from RadioML [1] has been
used to train and test the network. Although RadioML offers
several types of data packets, “RadioML 2016.10” dataset has
been used in this current work. It contains complex-valued
temporal radio signal corresponding to 11 different popular
modulation (both analog and digital) schemes. These complex-
valued temporal radio signal has undergone moderate LO drift,
light fading, at different signal and noise power settings.

This dataset has 220,000 slices of temporal radio signals
with SNR levels ranging from -20 dB to +18dB (with a step of
2dB). Each slice contains 2 time series, each containing 128
sampled points. They represent I and Q values in the
constellation diagram of a particular modulation. I/Q values are
nothing but a representation of the changes in magnitude and
phase of a sine wave [6].

TABLE I. RADIOML 2016.10 DATASET CONSTITUENTS

Modulation SNR Range No. of Data points

8PSK -20dB to 18dB 20,000

AM-DSB -20dB to 18dB 20,000

AM-SSB -20dB to 18dB 20,000

BPSK -20dB to 18dB 20,000

CPFSK -20dB to 18dB 20,000

GFSK -20dB to 18dB 20,000

PAM4 -20dB to 18dB 20,000

QAM16 -20dB to 18dB 20,000

QAM64 -20dB to 18dB 20,000

QPSK -20dB to 18dB 20,000

WBFM -20dB to 18dB 20,000

Total 220,000

B. Data Segmentation

RadioML 2016.10 dataset has been split into 3 segments -
Training, Validation and Test data. Their relative ratios (no. of
data points) have been presented in the following table.

TABLE II. TRAINING, VALIDATION AND TEST DATA

Dataset Size % of Total Data

Training 170500 77.5

Validation 24750 11.25

Test 24750 11.25

C. Data Preprocessing

The datasets have been preprocessed before using them to
train and test the network. Right after extracting the raw data
from RadioML 2016.10 pack, the data have been shuffled and
partitioned (into training, validation and test data). Afterwards,
each temporal radio signal (I + jQ) has been fed to Spectral
Correlation Function (SCF). The spectral correlation function
transformed each temporal radio signal in the dataset into a
64×64 matrix. Afterwards, each element of the matrix has been

normalized by the largest value in that matrix (max-
normalization). Assuming each matrix represents an image, the
entire process has generated 220,000 2D-SCF patterns (images)
of the size of 64 Pixels × 64 Pixels (each). The library for
generating SCF patters is developed by Prof. Vishal Saxena
(ECE, University of Idaho).

Fig. 1 illustrates the steps taken to process the RadioML

data.

Fig. 1. Flowchart demonstrating the data processing steps

D. Spectral Correlation Function

In the previous section, it was mentioned that Spectral

Correlation function (SCF) was used to preprocess the data.

Therefore, it is important to discuss SCF to develop a better

understanding of the entire process.

The Spectral Correlation Function is spectral density of

time-averaged correlation (covariance) [2-4]. It is defined as

the Fourier Transform of the cyclic autocorrelation function

(ACF), to allow the localization in the frequency domain of

the amount of time-correlation between frequency-shifted

versions of the discrete signal x[n] [7]. The SCF is given by

[7]-

(1)

Where,

 (2)

The reason SCF was used in this work is because it is

capable of extracting the signatures of a signal embedded deep

within the noise [3-5]. Therefore, instead of using the

RadioML data directly, SCF was employed to increase the

efficiency of the neural network. In Fig. 2, few examples of

2D-SCF patterns of signals (with noise) for different

modulations are presented.

Fig. 2. Example of SCF patterns of a PAM4 (left), QAM16 (middle) and

QAM64 (right) radio signal

III. NETWORK ARCHITECTURE

In this project, two popular neural network architectures
known as Feedforward Neural networks and Convolutional
Neural networks were investigated.

A. Feedforward Neural Network

Feedforward neural networks are the ones with no loops in
the network. It consists of simple neuron-like units. Every unit
in a particular layer is connected with the units of the previous
layer. The connections between the units are usually weighted
with different values. The data passes through the neural
network, and the sum of the products of the weights & the
inputs is calculated at each node [8]. Depending on the
activation function used, if the value exceeds a certain
threshold value, the neuron fires. Fig. 3 shows a schematic of a
typical feedforward neural network.

Fig. 3. Feedforward Neural Network [9]

B. Convolutional Neural Network

Convolutional neural network conducts a convolution

operation on the input data (image) and passes it to the next

layer. The next layer is usually a max or average pooling

layer. This pooling layer takes the maximum or average of

value of a group of neurons of the previous layer. This

convolution and pooling process might occur multiple times

based on the accuracy requirements. Afterwards, fully

connected layers are placed which are connected to all the

neurons in the previous layer and the next layer [5].

Fig. 4. Convolutional Neural Network [8].

IV. DESIGNING THE NETWORK

The network designing process involved two primary steps-
Network Architecture Selection & Network Parameter
Optimization. Performance of the network on the test data and
computational complexity were taken into account to select the
best candidate to take on the modulation detection problem.

NOTE: In the following sections, accuracy will presented
for different network architectures. Unless otherwise stated, all
the accuracies are evaluated using the test data.

A. Feedforward Neural Network

A number of different combinations of parameters were
investigated to design the network. The following table
summarizes the parameters and the corresponding accuracy
obtained.

TABLE III. ACCURACY AT DIFFERENT COMBINATIONS OF PARAMETERS

Fixed

Parameters
Epochs

Hidden

Layer1

(no. of

neurons)

Hidden

Layer2

(no. of

neurons)

 Accuracy

(%)

Cost Function

(cross-entropy)

Mini-Batch
(10)

Regularization

(10)
Learning Rate

(0.5)

27 500 - 40.82*

20 200 50 42.39

*Accuracy on Validation data

B. Convolutional Neural Network

In this work, different structures and combinations of
parameters were explored for convolutional neural network.

1) Number of convolution & pooling layers:
As mentioned above, one can implement multiple

convolution and pooling layers for this type of network.
Therefore, a quantitative analysis was carried out to find the
best performing combination.

TABLE IV. ACCURACY AT DIFFERENT COMBINATIONS OF PARAMETERS

Fixed

Parameters

(Conv1)

Maps1

(number)

&

Mask1

(size)

(Conv2)

Maps2

(number)

&

Mask2

(size)

Fully

connected

1

Fully

conne

cted 2

Accuracy

(%)

Image shape

(64×64)

Mini-batch

(10)

Activation
Function

(ReLU)

Lambda
(0.001)

Learning Rate

(0.03)
Dropout

(0.5)

Pooling 1&2
(2,2)

20

&

(5×5)

-
1000

neurons
-

40.67*

(after 21

epochs)

20

&

(5×5)

40×20
&

(3×3)

1000
neurons

1000

neuro

ns

42.11*

(after 21

epochs)

*Accuracy on Validation data

Decision: Two ConvPool and two fully connected layers
are better than one ConvPool layer and one fully connected
layer (for this dataset!).

2) Mask Shape:
The effect of mask shape (convolution layer) on accuracy

was also investigated. The first convolution layer mask size
were changed (from 5×5 to 9×9) to check its effect on
accuracy.

TABLE V. ACCURACY AT DIFFERENT COMBINATIONS OF PARAMETERS

Fixed

Parameters

(Conv1)

Maps1

&

Mask1

(Conv2)

Maps2

&

Mask2

Fully

connected

1

Fully

connected

2

Accuracy

(%)

Image shape

(64×64)

Mini-batch

(10)

Activation
Function

(ReLU)

Lambda
(0.001)

Learning Rate
(0.03)

Dropout

(0.5)
Pooling 1&2

(2,2)

20

&
(5×5)

40×20

&

(3×3)

1000

neurons

1000

neurons

44.49

(60
epochs)

20

&
(9×9)

40×20

&

(3×3)

1000

neurons

1000

neurons

44.13

(60
epochs)

Decision: A 5×5-mask in the first convolution layer is
better than a 9×9-mask (for this particular dataset).

3) Number of Neurons in the Fully-connected Layer:
The number of hidden neurons in the fully-connected layer

strongly affects the accuracy. Therefore, two accuracy tests
were carried out with different number of neurons keeping the
other parameters constant.

TABLE VI. ACCURACY AT DIFFERENT COMBINATIONS OF PARAMETERS

Fixed

Parameters

(Conv1)

Maps1

&

Mask1

(Conv2)

Maps2

&

Mask2

Fully

connected

1

Fully

connected

2

Accuracy

(%)

Image shape

(64×64)

Mini-batch
(10)

Activation

Function
(ReLU)

Lambda

(0.1)
Learning Rate

(0.03)

Dropout
(0.5)

Pooling 1&2

(2,2)

20

&

(5×5)

40×20
&

(3×3)

1000
neurons

1000
neurons

43.21*

(after 23

epochs)

20

&

(5×5)

40×20

&

(3×3)

100
neurons

100
neurons

38.55*

(after 23

epochs)

*Accuracy on Validation data

Decision: More number of neurons results in greater
accuracy (for this dataset).

4) Learning rate:
To optimize the learning rate for the best performing

network, three different learning rates were investigated,
keeping all other parameters constant.

TABLE VII. ACCURACY AT DIFFERENT COMBINATIONS OF PARAMETERS

Fixed

Parameters

(Conv1)

Maps1

(number)

&

Mask1

(Conv2)

Maps2

(number)

&

Mask2

Learning

Rate

Accuracy

(%)

Image shape

(64×64)

Mini-batch

(10)

Activation
Function

(ReLU)

Lambda
(0.001)

Dropout

(0.5)
Pooling 1&2

(2,2)

Fully
connected

1&2

(1000)

20

&

(5×5)

40×20
&

(3×3)

0.005
41.97

(70 epochs)

20

&
(5×5)

40×20
&

(3×3)

0.03
44.49

(60 epochs)

20

&

(5×5)

40×20
&

(3×3)

0.3

9.11

(constant for

all epochs)

Decision: A learning rate of 0.03 gives the best result for
our dataset compared to the other learning rates tested.

5) Regularization Parameter:
Two different regularization parameters were tried on this

network.

TABLE VIII. ACCURACY AT DIFFERENT COMBINATIONS OF PARAMETERS

Fixed

Parameters

(Conv1)

Maps 1

&

Mask1

(Conv2)

Maps 2

&

Mask2

Regularization

Parameter

Accuracy

(%)

Image shape

(64×64)

Mini-batch
(10)

Activation

Function
(ReLU)

Learning Rate

(0.03)
Dropout

(0.5)

Pooling 1&2
(2,2)

Fully

connected

1&2

(1000)

20

&
(5×5)

40×20

&

(3×3)

0.1
43.96*

(51 epochs)

20
&

(5×5)

40×20

&

(3×3)

0.001
44.49

(60 epochs)

* Accuracy on Validation data.

Decision: A smaller lambda (0.001) will be chosen for our
network.

6) Mini-batch:
Two different mini-batch size were tried on this network.

TABLE IX. ACCURACY AT DIFFERENT COMBINATIONS OF PARAMETERS

Fixed

Parameters

(Conv1)

Maps1

&

Mask1

(Conv2)

Maps2

&

Mask2

Mini-batch

Size

Accuracy

(%)

Image shape

(64×64)

Lambda

(0.001)

Activation
Function

(ReLU)

Learning Rate
(0.03)

Dropout

(0.5)
Pooling 1&2

(2,2)

Fully
connected

1&2

(1000)

20
&

(5×5)

40×20

&

(3×3)

10
44.49

(60 epochs)

20

&

(5×5)

40×20
&

(3×3)

30
43.42

(57 epochs)

Decision: A smaller mini-batch size (10) will be chosen for
our network.

V. FINAL DESIGN AND RESULTS

Based on the decisions made in the previous sections, the
convolutional neural network was chosen as it outperformed
feedforward neural network. The following tables describes the
final design.

TABLE X. FINAL DESIGN (INPUT & OUTPUT)

Input Output

64×64 11

TABLE XI. FINAL DESIGN (CONV1 LAYER)

Conv1

Mask

(Size)

Maps

No. Dimension

(5×5) 20 60×60

TABLE XII. FINAL DESIGN (POOLING1 LAYER)

Pooling layer1

Size

Pooled Maps (max pooling)

No. Dimension

2×2 20 30×30

TABLE XIII. FINAL DESIGN (CONV2 LAYER)

Conv2

Mask

(Size)

Maps

No. Dimension

3×3 40×20 28×28

TABLE XIV. FINAL DESIGN (POOLING2 LAYER)

Pooling layer2

Size

Pooled Maps (max pooling)

No. Dimension

2×2 40×20 14×14

TABLE XV. FINAL DESIGN (OTHER PARAMETERS)

Fixed

Parameters

Fully

connected

1&2

Learning

Rate

Regularization

Parameter
Cost Function

Mini-batch

(10)

Activation

Function

(ReLU)

Pooling 1&2

(2,2)

Softmax

output layer

Dropout

(0.5)

1000

neurons

0.03

0.001
Log-likelihood

cost function

The schematics of the network is presented in the Fig. 5.

Fig. 5. Schematics of the final design

Using the abovementioned parameters, a training-run was
carried out for 60 epochs. The entire result of this training has
been provided at the end of this report. For this training run, the
epoch vs accuracy plot is shown in Fig. 6. The final accuracy
on the test data was found to be 44.49%. This is very close to
the result reported in [11]. In [11], the accuracy on the test data
was 50.33%.

Fig. 6. Epochs vs Accuracy (%) during the training of the final network.

The first conv layer of the final network has 20 feature
maps. These feature maps are shown in Fig. 7.

Fig. 7. Feature maps in the first conv layer.

VI. DISCUSSION

A. Limitations of this work

Due to the long computational time required, several aspects
of the design optimization could not be investigated. They are
as follows-

1) Dropout parameter

2) Activation function: ReLU vs Sigmoid

3) Mask shape of the Conv2 layer

4) Downsampling schemes: max vs average pooling

5) 2+ ConvPool layers with 2+ Fully connected layers

6) Comparison of the cost functions: squared error, cross-

entropy, maximum likelihood

B. Challenges Encountered

This biggest challenge of this particular project was the
implementation of Spectral correlation function. Extensive
literature review was carried out to implement the SCF in
python.

Another challenge of this project was the computational
complexity introduced by SCF. For RadioML dataset, the SCF
produced 24.7 gigabytes of data which severely impacted the
number of trial-and-error steps that could be carried out with
the limited computational resources.

C. Further Comments

Although the convolutional neural network was
implemented and selected as our final design, it is important to
note that the simple feedforward neural network was
performing almost equally well. For this network, the highest
accuracy on the test data was found to be 42.39%. However,
this accuracy was obtained after running only 20 epochs
without optimizing any hyper parameters. Due to the
limitations of the computational resources, further exploration
into optimizing this network was not carried out. It is highly

probable that, for this particular dataset (RadioML),
feedforward network may outperform the sophisticated
convolutional neural network given that the proper
optimization of the parameters are carried out.

ACKNOWLEDGEMENTS

Support from Nvidia GPU donation program is gratefully
acknowledged. The author would like to thank Prof. Vishal
Saxena for developing the SCF library and Prof. John Chiasson
for the frequent project related discussions.

REFERENCES

[1] https://radioml.org/

[2] https://cyclostationary.blog/2015/09/28/the-spectral-correlation-
function/

[3] Mendis, G. J., Wei, J., and Madanayake, A., “Deep learning-based
automated modulation classification for cognitive radio,” in
Communication Systems (ICCS), 2016 IEEE International Conference
on (pp. 1-6), December, 2016.

[4] Mendis, G. J., Wei, J., and Madanayake, A. “Deep belief network for
automated modulation classification in cognitive radio,” in IEEE
Workshop on Cognitive Communications for Aerospace Applications
(CCAA), pp. 1-5, June 2017.

[5] https://en.wikipedia.org/wiki/Convolutional_neural_network

[6] http://www.ni.com/tutorial/4805/en/

[7] Costa, Evandro Luiz da, Thesis title - “Detection and identification of
cyclostationary signals,” Naval Postgraduate School.,
https://calhoun.nps.edu/handle/10945/8241.

[8] https://en.wikipedia.org/wiki/Feedforward_neural_network

[9] https://www.datasciencecentral.com/profiles/blogs/a-simple-neural-
network-with-python-and-keras

[10] Albelwi, Saleh; Mahmood, Ausif. 2017. "A Framework for
Designing the Architectures of Deep Convolutional Neural Networks."
Entropy 19, no. 6: 242.

[11] https://github.com/radioML/examples/blob/master/modulation_recogniti
on/RML2016.10a_VTCNN2_example.ipynb

https://cyclostationary.blog/2015/09/28/the-spectral-correlation-function/
https://cyclostationary.blog/2015/09/28/the-spectral-correlation-function/
https://github.com/radioML/examples/blob/master/modulation_recognition/RML2016.10a_VTCNN2_example.ipynb
https://github.com/radioML/examples/blob/master/modulation_recognition/RML2016.10a_VTCNN2_example.ipynb

