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Abstract—In this project, a convolutional neural network has 

been designed to recognize modulation type in a complex-valued 

temporal radio signal. The network has been trained using 

RadioML dataset [1]. However, the data was not directly used to 

train the network. The data has been preprocessed by 

implementing Spectral Correlation Function (SCF) [2-4] and 

Max-normalization. Prior to proposing a final design, several 

network architectures have been investigated, and the 

architecture with the best performance on the test data has been 

chosen. The final design takes in 4096 inputs and has 11 outputs 

(corresponding to 11 modulations available in the data set). 
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I.  INTRODUCTION 

In recent years, demand for massive data traffic in the 
wireless communication channels has sparked the need for 
better and more efficient radio spectrum analysis with high 
degree of automation and optimization. A small yet very 
important part of meeting such demands is to detect 
modulation type of a received signal with high level of 
accuracy. Therefore, for this current project, a neural network 
has been proposed and implemented to classify modulation 
schemes used in the received signal using Convolutional 
Neural Network (CNN) [5]. 

II. THE DATASET 

A. RadioML 2016.10 

For this project, the dataset from RadioML [1] has been 
used to train and test the network. Although RadioML offers 
several types of data packets, “RadioML 2016.10” dataset has 
been used in this current work. It contains complex-valued 
temporal radio signal corresponding to 11 different popular 
modulation (both analog and digital) schemes. These complex-
valued temporal radio signal has undergone moderate LO drift, 
light fading, at different signal and noise power settings. 

This dataset has 220,000 slices of temporal radio signals 
with SNR levels ranging from -20 dB to +18dB (with a step of 
2dB). Each slice contains 2 time series, each containing 128 
sampled points. They represent I and Q values in the 
constellation diagram of a particular modulation. I/Q values are 
nothing but a representation of the changes in magnitude and 
phase of a sine wave [6]. 

 

TABLE I.  RADIOML 2016.10 DATASET CONSTITUENTS 

Modulation SNR Range No. of Data points 

8PSK -20dB to 18dB 20,000 

AM-DSB -20dB to 18dB 20,000 

AM-SSB -20dB to 18dB 20,000 

BPSK -20dB to 18dB 20,000 

CPFSK -20dB to 18dB 20,000 

GFSK -20dB to 18dB 20,000 

PAM4 -20dB to 18dB 20,000 

QAM16 -20dB to 18dB 20,000 

QAM64 -20dB to 18dB 20,000 

QPSK -20dB to 18dB 20,000 

WBFM -20dB to 18dB 20,000 

Total 220,000 

B. Data Segmentation  

RadioML 2016.10 dataset has been split into 3 segments - 
Training, Validation and Test data. Their relative ratios (no. of 
data points) have been presented in the following table. 

TABLE II.  TRAINING, VALIDATION AND TEST DATA 

Dataset Size % of Total Data 

Training 170500 77.5 

Validation 24750 11.25 

Test 24750 11.25 

 

C. Data Preprocessing 

The datasets have been preprocessed before using them to 
train and test the network. Right after extracting the raw data 
from RadioML 2016.10 pack, the data have been shuffled and 
partitioned (into training, validation and test data). Afterwards, 
each temporal radio signal (I + jQ) has been fed to Spectral 
Correlation Function (SCF). The spectral correlation function 
transformed each temporal radio signal in the dataset into a 
64×64 matrix. Afterwards, each element of the matrix has been 



 

normalized by the largest value in that matrix (max-
normalization). Assuming each matrix represents an image, the 
entire process has generated 220,000 2D-SCF patterns (images) 
of the size of 64 Pixels × 64 Pixels (each). The library for 
generating SCF patters is developed by Prof. Vishal Saxena 
(ECE, University of Idaho). 

 
Fig. 1 illustrates the steps taken to process the RadioML 

data. 
 
 

               

Fig. 1. Flowchart demonstrating the data  processing steps 

D. Spectral Correlation Function 

In the previous section, it was mentioned that Spectral 

Correlation function (SCF) was used to preprocess the data. 

Therefore, it is important to discuss SCF to develop a better 

understanding of the entire process. 

 

The Spectral Correlation Function is spectral density of 

time-averaged correlation (covariance) [2-4]. It is defined as 

the Fourier Transform of the cyclic autocorrelation function 

(ACF), to allow the localization in the frequency domain of 

the amount of time-correlation between frequency-shifted 

versions of the discrete signal x[n] [7]. The SCF is given by 

[7]- 

 

(1) 

Where, 

 

 (2) 

 

The reason SCF was used in this work is because it is 

capable of extracting the signatures of a signal embedded deep 

within the noise [3-5]. Therefore, instead of using the 

RadioML data directly, SCF was employed to increase the 

efficiency of the neural network. In Fig. 2, few examples of 

2D-SCF patterns of signals (with noise) for different 

modulations are presented. 

 

Fig. 2. Example of SCF patterns of a PAM4 (left), QAM16 (middle) and 

QAM64 (right) radio signal 

III. NETWORK ARCHITECTURE 

In this project, two popular neural network architectures 
known as Feedforward Neural networks and Convolutional 
Neural networks were investigated.  

A. Feedforward Neural Network 

Feedforward neural networks are the ones with no loops in 
the network. It consists of simple neuron-like units. Every unit 
in a particular layer is connected with the units of the previous 
layer. The connections between the units are usually weighted 
with different values. The data passes through the neural 
network, and the sum of the products of the weights & the 
inputs is calculated at each node [8]. Depending on the 
activation function used, if the value exceeds a certain 
threshold value, the neuron fires. Fig. 3 shows a schematic of a 
typical feedforward neural network. 

 

Fig. 3. Feedforward Neural Network [9] 

B. Convolutional Neural Network 

Convolutional neural network conducts a convolution 

operation on the input data (image) and passes it to the next 

layer. The next layer is usually a max or average pooling 

layer. This pooling layer takes the maximum or average of 

value of a group of neurons of the previous layer. This 

convolution and pooling process might occur multiple times 

based on the accuracy requirements. Afterwards, fully 



 

connected layers are placed which are connected to all the 

neurons in the previous layer and the next layer [5]. 

 

 

Fig. 4. Convolutional Neural Network [8]. 

IV. DESIGNING THE NETWORK 

The network designing process involved two primary steps- 
Network Architecture Selection & Network Parameter 
Optimization. Performance of the network on the test data and 
computational complexity were taken into account to select the 
best candidate to take on the modulation detection problem. 

NOTE: In the following sections, accuracy will presented 
for different network architectures. Unless otherwise stated, all 
the accuracies are evaluated using the test data. 

A. Feedforward Neural Network 

A number of different combinations of parameters were 
investigated to design the network. The following table 
summarizes the parameters and the corresponding accuracy 
obtained. 

TABLE III.  ACCURACY AT DIFFERENT COMBINATIONS OF PARAMETERS 

Fixed 

Parameters 
Epochs 

Hidden 

Layer1 

(no. of 

neurons) 

Hidden 

Layer2 

(no. of 

neurons) 

 Accuracy 

(%) 

Cost Function 

(cross-entropy) 

Mini-Batch 
(10) 

Regularization 

(10) 
Learning Rate 

(0.5) 

27 500 - 40.82* 

20 200 50 42.39 

*Accuracy on Validation data 

 

B. Convolutional Neural Network 

In this work, different structures and combinations of 
parameters were explored for convolutional neural network. 

1) Number of convolution & pooling layers: 
As mentioned above, one can implement multiple 

convolution and pooling layers for this type of network. 
Therefore, a quantitative analysis was carried out to find the 
best performing combination. 

 

 

TABLE IV.  ACCURACY AT DIFFERENT COMBINATIONS OF PARAMETERS 

Fixed 

Parameters 

(Conv1) 

Maps1 

(number) 

& 

Mask1 

(size) 

(Conv2) 

Maps2 

(number) 

& 

Mask2 

(size) 

Fully 

connected 

1 

Fully 

conne

cted 2 

Accuracy 

(%) 

Image shape 

(64×64) 

Mini-batch 

(10) 

Activation 
Function 

(ReLU) 

Lambda 
(0.001) 

Learning Rate 

(0.03) 
Dropout 

(0.5) 

Pooling 1&2 
(2,2) 

20 

& 

(5×5) 

- 
1000 

neurons 
- 

40.67* 

(after 21 

epochs) 

20 

& 

(5×5) 

40×20 
& 

(3×3) 

1000 
neurons 

1000 

neuro

ns 

42.11* 

(after 21 

epochs) 

*Accuracy on Validation data 

Decision: Two ConvPool and two fully connected layers 
are better than one ConvPool layer and one fully connected 
layer (for this dataset!). 

2) Mask Shape: 
The effect of mask shape (convolution layer) on accuracy 

was also investigated. The first convolution layer mask size 
were changed (from 5×5 to 9×9) to check its effect on 
accuracy. 

TABLE V.  ACCURACY AT DIFFERENT COMBINATIONS OF PARAMETERS 

Fixed 

Parameters 

(Conv1) 

Maps1 

& 

Mask1 

(Conv2) 

Maps2 

& 

Mask2 

Fully 

connected 

1 

Fully 

connected 

2 

Accuracy 

(%) 

Image shape 

(64×64) 

Mini-batch 

(10) 

Activation 
Function 

(ReLU) 

Lambda 
(0.001) 

Learning Rate 
(0.03) 

Dropout 

(0.5) 
Pooling 1&2 

(2,2) 

20 

& 
(5×5) 

40×20 

& 

(3×3) 

1000 

neurons 

1000 

neurons 

44.49 

(60 
epochs) 

20 

& 
(9×9) 

40×20 

& 

(3×3) 

1000 

neurons 

1000 

neurons 

44.13 

(60 
epochs) 

 

Decision: A 5×5-mask in the first convolution layer is 
better than a 9×9-mask (for this particular dataset). 

3) Number of  Neurons in the Fully-connected Layer: 
The number of hidden neurons in the fully-connected layer 

strongly affects the accuracy. Therefore, two accuracy tests 
were carried out with different number of neurons keeping the 
other parameters constant. 

 

 



 

TABLE VI.  ACCURACY AT DIFFERENT COMBINATIONS OF PARAMETERS 

Fixed 

Parameters 

(Conv1) 

Maps1 

& 

Mask1 

(Conv2) 

Maps2 

& 

Mask2 

Fully 

connected 

1 

Fully 

connected 

2 

Accuracy 

(%) 

Image shape 

(64×64) 

Mini-batch 
(10) 

Activation 

Function 
(ReLU) 

Lambda 

(0.1) 
Learning Rate 

(0.03) 

Dropout 
(0.5) 

Pooling 1&2 

(2,2) 

20 

& 

(5×5) 

40×20 
& 

(3×3) 

1000 
neurons 

1000 
neurons 

43.21* 

(after 23 

epochs) 

20 

& 

(5×5) 

40×20 

& 

(3×3) 

100 
neurons 

100 
neurons 

38.55* 

(after 23 

epochs) 

*Accuracy on Validation data 

Decision: More number of neurons results in greater 
accuracy (for this dataset). 

4) Learning rate: 
To optimize the learning rate for the best performing 

network, three different learning rates were investigated, 
keeping all other parameters constant. 

TABLE VII.  ACCURACY AT DIFFERENT COMBINATIONS OF PARAMETERS 

Fixed 

Parameters 

(Conv1) 

Maps1 

(number) 

& 

Mask1 

(Conv2) 

Maps2 

(number) 

& 

Mask2 

Learning 

Rate 

Accuracy 

(%) 

Image shape 

(64×64) 

Mini-batch 

(10) 

Activation 
Function 

(ReLU) 

Lambda 
(0.001) 

Dropout 

(0.5) 
Pooling 1&2 

(2,2) 

Fully 
connected 

1&2 

(1000) 

20 

& 

(5×5) 

40×20 
& 

(3×3) 

0.005 
41.97 

(70 epochs) 

20 

& 
(5×5) 

40×20 
& 

(3×3) 

0.03 
44.49 

(60 epochs) 

20 

& 

(5×5) 

40×20 
& 

(3×3) 

0.3 

9.11 

(constant for 

all epochs) 

 

Decision: A learning rate of 0.03 gives the best result for 
our dataset compared to the other learning rates tested. 

5) Regularization Parameter: 
Two different regularization parameters were tried on this 

network. 

 

 

 

 

TABLE VIII.  ACCURACY AT DIFFERENT COMBINATIONS OF PARAMETERS 

Fixed 

Parameters 

(Conv1) 

Maps 1 

& 

Mask1 

(Conv2) 

Maps 2 

& 

Mask2 

Regularization 

Parameter 

Accuracy 

(%) 

Image shape 

(64×64) 

Mini-batch 
(10) 

Activation 

Function 
(ReLU) 

Learning Rate 

(0.03) 
Dropout 

(0.5) 

Pooling 1&2 
(2,2) 

Fully 

connected 

1&2 

(1000) 

20 

& 
(5×5) 

40×20 

& 

(3×3) 

0.1 
43.96* 

(51 epochs) 

20 
& 

(5×5) 

40×20 

& 

(3×3) 

0.001 
44.49 

(60 epochs) 

* Accuracy on Validation data. 

Decision: A smaller lambda (0.001) will be chosen for our 
network. 

6) Mini-batch: 
Two different mini-batch size were tried on this network. 

TABLE IX.  ACCURACY AT DIFFERENT COMBINATIONS OF PARAMETERS 

Fixed 

Parameters 

(Conv1) 

Maps1 

& 

Mask1 

(Conv2) 

Maps2 

& 

Mask2 

Mini-batch 

Size 

Accuracy 

(%) 

Image shape 

(64×64) 

Lambda 

(0.001) 

Activation 
Function 

(ReLU) 

Learning Rate 
(0.03) 

Dropout 

(0.5) 
Pooling 1&2 

(2,2) 

Fully 
connected 

1&2 

(1000) 

20 
& 

(5×5) 

40×20 

& 

(3×3) 

10 
44.49 

(60 epochs) 

20 

& 

(5×5) 

40×20 
& 

(3×3) 

30 
43.42 

(57 epochs) 

 

Decision: A smaller mini-batch size (10) will be chosen for 
our network. 

V.   FINAL DESIGN AND RESULTS 

Based on the decisions made in the previous sections, the 
convolutional neural network was chosen as it outperformed 
feedforward neural network. The following tables describes the 
final design. 

 

 

 



 

TABLE X.  FINAL DESIGN (INPUT & OUTPUT)  

Input Output 

64×64 11 

TABLE XI.  FINAL DESIGN (CONV1 LAYER)  

Conv1 

Mask 

(Size) 

Maps 

No. Dimension 

(5×5) 20 60×60 

TABLE XII.  FINAL DESIGN (POOLING1 LAYER)  

Pooling layer1 

 

Size 

Pooled Maps (max pooling) 

No. Dimension 

2×2 20 30×30 

TABLE XIII.  FINAL DESIGN (CONV2 LAYER)  

Conv2 

Mask 

(Size) 

Maps 

No. Dimension 

3×3 40×20 28×28 

TABLE XIV.  FINAL DESIGN (POOLING2 LAYER)  

Pooling layer2 

 

Size 

Pooled Maps (max pooling) 

No. Dimension 

2×2 40×20 14×14 

TABLE XV.  FINAL DESIGN (OTHER PARAMETERS)  

Fixed 

Parameters 

Fully 

connected 

1&2 

Learning 

Rate 

 

Regularization 

Parameter 
Cost Function 

Mini-batch 

(10) 

 
Activation 

Function 

(ReLU) 
 

Pooling 1&2 

(2,2) 
 

Softmax 

output layer 
 

Dropout 

(0.5) 
 

1000 

neurons 

 
0.03 

 

0.001 
Log-likelihood 

cost function 

The schematics of the network is presented in the Fig. 5. 

 

Fig. 5. Schematics of the final design 

Using the abovementioned parameters, a training-run was 
carried out for 60 epochs. The entire result of this training has 
been provided at the end of this report. For this training run, the 
epoch vs accuracy plot is shown in Fig. 6. The final accuracy 
on the test data was found to be 44.49%. This is very close to 
the result reported in [11]. In [11], the accuracy on the test data 
was 50.33%. 

 

 

Fig. 6. Epochs vs Accuracy (%) during the training of the final network. 

 

The first conv layer of the final network has 20 feature 
maps. These feature maps are shown in Fig. 7. 

 

Fig. 7. Feature maps in the first conv layer. 



 

VI. DISCUSSION 

A. Limitations of this work 

Due to the long computational time required, several aspects 
of the design optimization could not be investigated. They are 
as follows- 

1) Dropout parameter 

2) Activation function: ReLU vs Sigmoid 

3) Mask shape of the Conv2 layer 

4) Downsampling schemes: max vs average pooling 

5) 2+ ConvPool layers with 2+ Fully connected layers 

6) Comparison of the cost functions: squared error, cross-

entropy, maximum likelihood 

 

B. Challenges Encountered 

This biggest challenge of this particular project was the 
implementation of Spectral correlation function. Extensive 
literature review was carried out to implement the SCF in 
python. 

Another challenge of this project was the computational 
complexity introduced by SCF. For RadioML dataset, the SCF 
produced 24.7 gigabytes of data which severely impacted the 
number of trial-and-error steps that could be carried out with 
the limited computational resources. 

C. Further Comments 

Although the convolutional neural network was 
implemented and selected as our final design, it is important to 
note that the simple feedforward neural network was 
performing almost equally well. For this network, the highest 
accuracy on the test data was found to be 42.39%. However, 
this accuracy was obtained after running only 20 epochs 
without optimizing any hyper parameters. Due to the 
limitations of the computational resources, further exploration 
into optimizing this network was not carried out. It is highly 

probable that, for this particular dataset (RadioML), 
feedforward network may outperform the sophisticated 
convolutional neural network given that the proper 
optimization of the parameters are carried out. 
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