
Homework 2

ECE 504 - PLL and High-Speed Link Design

Problem 1- Feedback System Stability

A feedback system representative of a PLL is shown below, where G(s) is the forward-path transfer function and the feedback gain is given by $H(s) = \frac{1}{k}$.

- 1. For each the following systems, plot- (i) loop-response (magnitude and phase), (ii) closed-loop response, and (iii) closed-loop transient step-response. Also, label the parameters $\omega_{u,loop}$, ω_{3dB} , phase and gain margins (*PM* and *GM*), closed-loop DC gain (A_{CL}).
 - (a) $G(s) = \frac{10^3}{s}, k = 1, 10$ (*Type-I system*)
 - (b) $G(s) = \frac{10^3}{\left(1 + \frac{s}{10^3}\right)\left(1 + \frac{s}{10^4}\right)}, k = 1, 10$ (two close poles)
 - (c) $G(s) = \frac{10^3}{(1+\frac{s}{10^6})(1+\frac{s}{10^6})}, k = 1, 10$ (two separated poles) (d) $G(s) = \frac{5 \times 10^8}{s^2}, k = 1, 10$ (Type-II system)
 - (e) $G(s) = \frac{5 \times 10^8 \left(1 + \frac{s}{10^3}\right)}{s^2}, k = 1, 10$ (Type-II system with a zero)

(f)
$$G(s) = \frac{5 \times 10^8 (1 + \frac{s}{10^3})}{s^2 (1 + \frac{s}{10^6})}, k = 1, 10$$
 (Type-II system with a zero and a pole)

2. Comment on the stability of the above systems in a closed loop. Do you observe any relation between the PM and the settling response?

PS: Make sure you spend some effort in arranging and illustrating the plots instead of just copypasting the plots in the document.