
ECE 445 INTRO TO VLSI DESIGN

COURSE INTRODUCTION

VISHAL SAXENA VSAXENA@UIDAHO.EDU

COURSE OUTLINE

Instructor : Dr. Vishal Saxena

Office BEL 318

Email: vsaxena AT uidaho DOT edu

Time : MWF, 8:00-9:20 AM

Course dates : Jan 9 – May 3, 2019

Location : JEB 021

Office Hours : MW 11:30AM -12:30 PM (or by appointment)

Website : http://lumerink.com/courses/ece445/s19/ECE445.htm

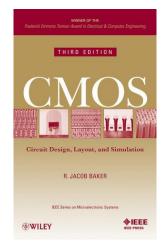
© Vishal Saxena

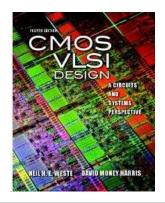
COURSE OBJECTIVES

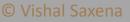
- This course focuses on design of CMOS very large scale integrated (VLSI) circuits and their applications.
- At the end of the course, it is expected that you will be able to design, analyze, layout, and simulate custom integrated circuits using CAD tools.

COURSE TOPICS

- An introduction to CMOS IC design, layout, and simulation
- MOSFET operation and parasitics
- Digital design fundamentals
- Digital logic design and analysis
 - Logic sequencing
 - Custom circuits: Charge pumps
- Extensive amount of circuit design, layout and simulation in Cadence design environment
- Pre-requisite
 - Brush-up concepts from ECE 310 (Microelectronics)




© Vishal Saxena


TEXTBOOK

- <u>CMOS Circuit Design, Layout and Simulation</u> R. J. Baker, 3rd Ed., Wiley-IEEE, 2010.
 - Circuit design and simulation examples and tutorials from the book site. (<u>http://cmosedu.com</u>)
 - Book cadence examples available on the server.
- <u>CMOS VLSI Design: A Circuits and Systems Perspective</u>, N. Weste and D. Harris, 4th Ed., Addison-Wesley, 2010.
 - Used for advanced topics in digital logic and sequencing towards the end of the course.
- For handouts see course page.

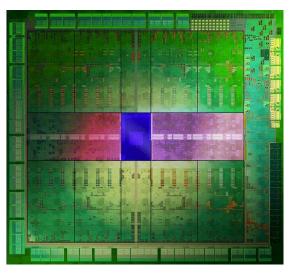
COURSE PEDAGOGY AND GRADING

- Combination of lecture notes and slides
 - Lecture notes/slides will be posted online at the end of the week
 - Take your own notes in class instead of listening passively
- Workload (Grading)
 - 20% Midterm Exam 1
 - 20% Midterm Exam 2
 - 20% Homeworks
 - 20% Project
 - 20% Final Exam

© Vishal Saxena

COURSE POLICIES

- Late work is highly discouraged (see policy on the course page)
- All assigned work is due at the beginning of class on due date
- Verify your HW answers with the posted solutions to understand the material.
- Come prepared for the Sample Exam study sessions.
- Final exam will not be returned at the end of the semester
- Avoid internet surfing in class on any device
- Plagiarism and outsourcing of work is not acceptable
 - Detailed policies are available in the Syllabus on the course site.

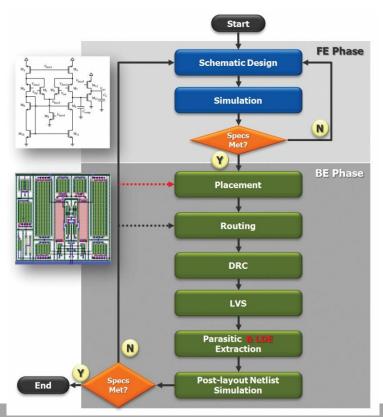


DIGITAL VLSICS IN ACTION

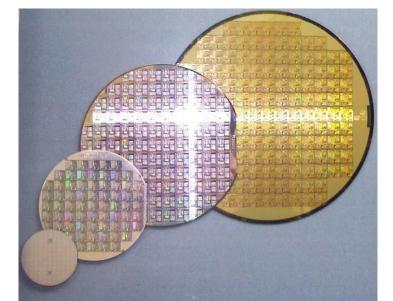
2nd Generation Intel[®] Core[™] Processor Die Map 32nm Sandy Bridge High-k + Metal Gate Transistors Соге System Соге Соге Соге Agent & Memorv Processor Controller Graphics including DMI, Display and Misc. I/O Shared L3 Cache** Memory Controller I/O

Intel Quad-core Processor

https://www.notebookcheck.net/Review-Intel-HD-Graphics-3000-graphics-solution.43710.0.html


Nvidia "Kepler1" GK104 GPU

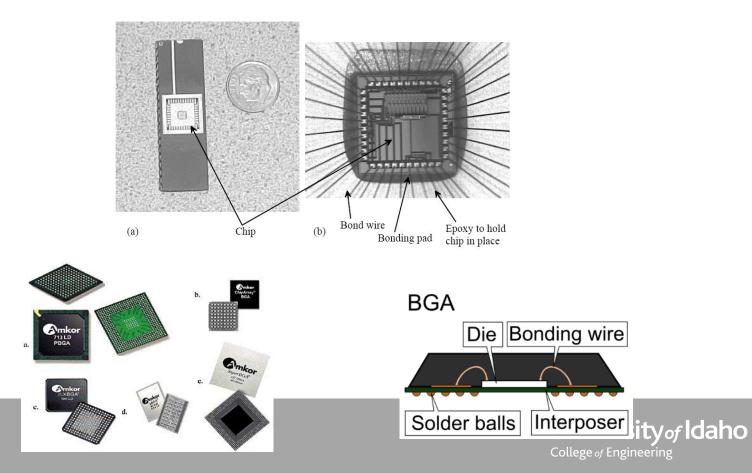
https://www.theregister.co.uk/2012/05/18/inside_ nvidia_kepler2_gk110_gpu_tesla/


CUSTOM IC DESIGN FLOW

University of Idaho College of Engineering

STANDARD WAFER SIZES

- 1 inch.
- 2 inch (50.8 mm). Thickness 275 μm.
- 3 inch (76.2 mm). Thickness 375 μm.
- 4 inch (100 mm). Thickness 525 $\mu m.$
- + 5 inch (127 mm) or 125 mm (4.9 inch). Thickness 625 $\mu m.$
- 150 mm (5.9 inch, usually referred to as "6 inch"). Thickness 675 $\mu m.$
- 200 mm (7.9 inch, usually referred to as "8 inch"). Thickness 725 $\mu m.$
- 300 mm (11.8 inch, usually referred to as "12 inch" or "Pizza size" wafer). Thickness 775 μ m.
- 450 mm ("18 inch"). Thickness 925 μm



University of Idaho

College of Engineering

PACKAGES AND DICES

DIP PACKAGING

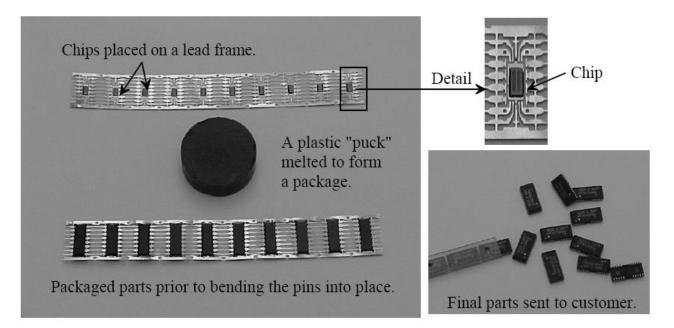
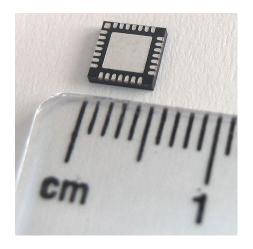
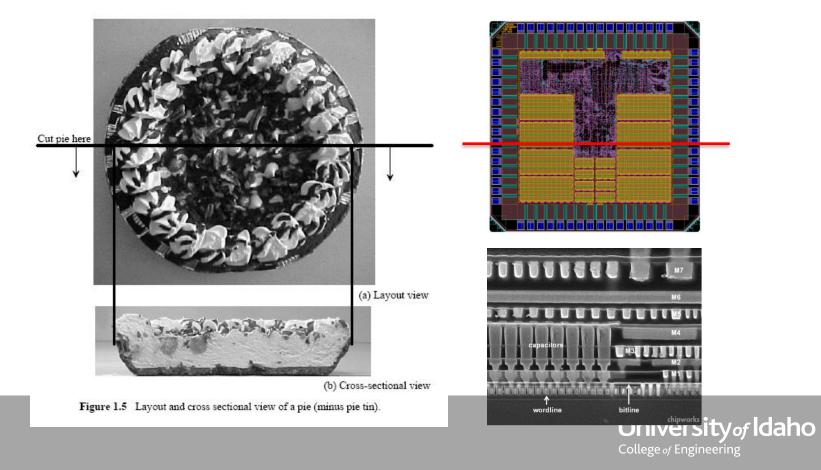



Figure 1.4 Plastic packages are used (generally) when the chip is mass produced.

RECENT PACKAGES

5	•	•	•	•	•			•		•			•	۲	•	•				0	
	۲	-		ø		1															
										•											
	۲		٠															•			
		•	۲													=					
		•	۲													-	-			0	۲
	•															-					
																-	21				
	۲		•													-	- V				
																-					•
	•															-	200				
	•																	٠			
	•	•														-	1				
	•	•																			
																-					
	•	•														-	10				
	٢		٠														He.		٠		
																-	*				
			•													-	ų	٠			
	۲		۲													-	14				
0	0		۲														22				
	۲								٢	٢											
							۲				0							۲			۲
0															۲						
0	0					0				1	6		6			(-	-	6	6	


BGA

Refer to: <u>http://en.wikipedia.org/wiki/Chip_package</u>

LAYOUT AND CROSS-SECTIONAL VIEWS

Back to the basics of IC Design.

