ECE 445 Intro to VLSI Design Sample Midterm 2

Apr 8, 2019

Name:	
T dillic.	

Closed Book, Closed Notes, Closed Computer.

Show your steps clearly to get credit.

State clearly any assumptions made.

This exam has 6 questions, for a total of 100 points.

Unless otherwise indicated use the following device parameters for the C5 process for hand calculations:

Parameter	Value
Scale factor (λ)	$0.3\mu m$
V_{DD}	5 V
C'_{ox}	$2.8 \frac{fF}{\mu m^2}$
V_{THN}	0.8 V
V_{THP}	0.9 V
KP_n	$115 \frac{\mu A}{V^2}$
KP_p	$60 \frac{\mu A}{V^2}$

Long Channel MOSFET equations:

$$V_{THN} = V_{THN0} + \gamma(\sqrt{|2V_{fp}| + V_{SB}} - \sqrt{|2V_{fp}|})$$

$$V_{THN} = V_{THN0} + \gamma(\sqrt{|2V_{fp}|} + V_{SB} - \sqrt{|2V_{fp}|})$$

$$I_D = \begin{cases} KP_n \frac{W}{L} \left((V_{GS} - V_{THN}) V_{DS} - \frac{V_{DS}^2}{2} \right), & V_{DS} < V_{GS} - V_{THN} \\ \frac{1}{2} KP_n \frac{W}{L} \left(V_{GS} - V_{THN} \right)^2, & V_{DS} \ge V_{GS} - V_{THN} \end{cases}, \quad V_{GS} > V_{THN}$$
Digital MOSFET Model:

$$R'_{n,p} = \frac{V_{DD}}{\frac{1}{2}KP_{n,p}(V_{DD} - V_{THN})^2}$$

$$R_{n,p} = R'_{n,p} \frac{L}{W}$$

Logical Effort equations:

$$\begin{split} F &= GBH \triangleq H \text{ for an inverter chain } \hat{f} = F^{\frac{1}{N}} \text{ for the least delay } \\ D &= P + N \cdot \hat{f} \end{split}$$

1. (10 points) For the circuits seen below, plot the current I_x as the voltage V_x is swept from 0 to V_{DD} .

2. (a) (5 points) Based on the data provided on the first page, estimate C_{ox}' , R_n' , and R_p' . Show your work.

(b) (5 points) Fill the following table using the data provided on the first page.

Device	Drawn	Actual size	$R_{n,p}$	$C_{oxn,p}$
NMOS	10/2	$3\mu m$ by $0.6\mu m$		fF
PMOS	20/2	$4.5 \mu m$ by $0.6 \mu m$		fF

3.	(a)	(10 points) Estimate the oscillation frequency (f_{osc}) of a 21-stage ring oscillator designed using 10/2 NMOS and 20/2 PMOS devices.
	(b)	(5 points) Calculate the total dynamic power dissipated in the oscillator?
	(c)	(5 points) How does f_{osc} change when the supply voltage V_{DD} is varied from 0 to 5V? Explain.

- 4. This problem involves the design a buffer to drive 10 pF load with the least delay. Use the C5 process data from the first page, and the approximated switching model of MOSFETs with $C_{in} = C_{out} = C_{ox}$.
 - (a) (5 points) Calculate the input capacitance (C_{in1}) and the time-constant (τ) of a unit inverter (size 20/10).

(b) (10 points) Calculate the path effort (F) for a load of 10 pF, and find the number of stages in the buffer for least delay.

(c) (5 po	oints) What i	s the normalized	buffer dela	(D)?	What is the	absolute bu	ıffer
delay	(t_d) ?						

(d) (5 points) Sketch the buffer with sizing for each of the stages.

5. (15 points) Find the voltages at each of the nodes, A, B, C, D, E and F below. Use the circuit parameters for the 300nm model given on the first page.

6. Consider the NMOS-only inverter shown below. Use the square-law equations and C5 process data from page 1. Show steps for partial credit.

(a) (5 points) Calculate inverter switching point V_{sp} .

(b) (5 points) Find the voltage levels for output logic high (V_{high}) and low (V_{low}) .

(c)	(5 points) Plot the voltage transfer curve (VTC) for the inverter and clearly label V_{sp} , V_{high} and V_{low} values on the curve.
(d)	(5 points) Estimate the delays t_{pLH} and t_{pHL} for the inverter driving a $100fF$ load