ECE 445 INTRO TO VLSI DESIGN

DIGITAL DESIGN USING LOGICAL EFFORT

VISHAL SAXENA

VSAXENA@UIDAHO.EDU

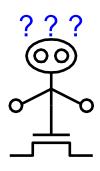
OUTLINE

- Logical Effort
- Delay in a Logic Gate
- Multistage Logic Networks
- Choosing the Best Number of Stages
- Example
- Summary

INTRODUCTION

- Chip designers face a bewildering array of choices
 - What is the best circuit topology for a function?
 - How many stages of logic give least delay?
 - How wide should the transistors be?

- Logical effort is a method to make these decisions
 - Uses a simple model of delay
 - Allows back-of-the-envelope calculations
 - Helps make rapid comparisons between alternatives
 - Emphasizes remarkable symmetries



DELAY IN A LOGIC GATE

Express delays in process-independent unit

Delay has two components: d = f + p

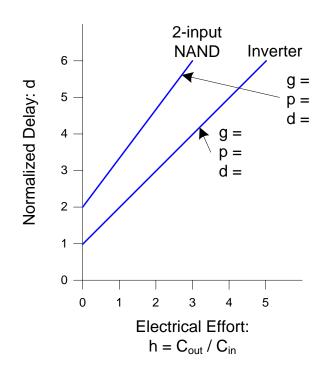
- f. effort delay = gh (a.k.a. stage effort)
 - Again has two components
- g: logical effort
 - Measures relative ability of gate to deliver current
 - g = 1 for inverter
- h: electrical effort = C_{out} / C_{in}
 - Ratio of output to input capacitance
 - Sometimes called fanout
- p: parasitic delay
 - Represents delay of gate driving no load
 - Set by internal parasitic capacitance

$$d = \frac{d_{abs}}{\tau}$$

 \approx 3 ps in 65 nm process 60 ps in 0.6 μm process

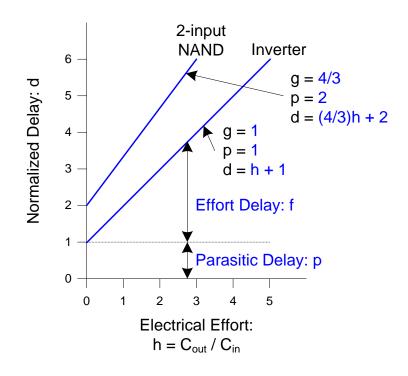
DELAY PLOTS

- d = f + p
 - = gh + p
- What about
- NOR2?



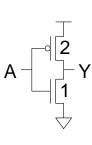
DELAY PLOTS

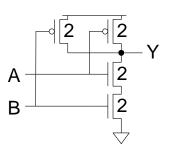
- d = f + p
 - = gh + p
- What about
- NOR2?



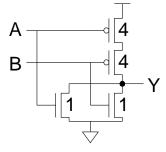
COMPUTING LOGICAL EFFORT

- DEF: Logical effort is the ratio of the input capacitance of a gate to the input capacitance of an inverter delivering the same output current.
- Measure from delay vs. fanout plots
- Or estimate by counting transistor widths





$$C_{in} = 4$$
$$g = 4/3$$



$$C_{in} = 5$$

 $g = 5/3$

CATALOG OF GATES

Logical effort of common gates

Gate type	Number of inputs				
	1	2	3	4	n
Inverter	1				
NAND		4/3	5/3	6/3	(n+2)/3
NOR		5/3	7/3	9/3	(2n+1)/3
Tristate / mux	2	2	2	2	2
XOR, XNOR		4, 4	6, 12, 6	8, 16, 16, 8	

CATALOG OF GATES

- Parasitic delay of common gates
 - In multiples of p_{inv} (≈1)

Gate type	Number of inputs				
	1	2	3	4	n
Inverter	1				
NAND		2	3	4	n
NOR		2	3	4	n
Tristate / mux	2	4	6	8	2n
XOR, XNOR		4	6	8	

EXAMPLE: RING OSCILLATOR

Estimate the frequency of an N-stage ring oscillator

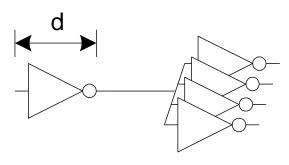
- Logical Effort: g = 1
- Electrical Effort: h = 1
- Parasitic Delay: p = 1
- Stage Delay: d = 2
- Frequency: $f_{osc} = 1/(2*N*d) = 1/4N$

31 stage ring oscillator in 0.6 μ m process has frequency of ~ 200 MHz

EXAMPLE: FO4 INVERTER

• Estimate the delay of a fanout-of-4 (FO4)

inverter



- Logical Effort: g = 1
- Electrical Effort: h = 4
- Parasitic Delay: p = 1
- Stage Delay: d = 5

The FO4 delay is about

300 ps in 0.6 μm process

15 ps in a 65 nm process

MULTISTAGE LOGIC NETWORKS

- Logical effort generalizes to multistage networks
- Path Logical Effort

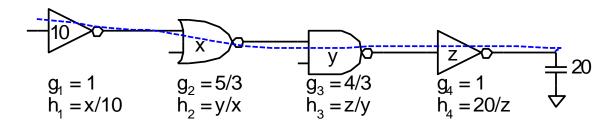
Path Electrical Effort

$$G = \prod g_i$$

$$H = \frac{C_{\text{out-path}}}{C_{\text{in-path}}}$$

$$F = \prod f_i = \prod g_i h_i$$

Path Effort



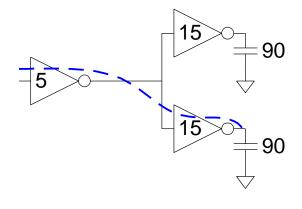
MULTISTAGE LOGIC NETWORKS

- Logical effort generalizes to multistage networks
- Path Logical Effort $G = \prod g_i$
- Path Electrical Effort $H = \frac{C_{out-path}}{C_{in-path}}$
- Path Effort $F = \prod f_i = \prod g_i h_i$
- Can we write F = GH?

PATHS THAT BRANCH

No! Consider paths that branch:

- G = 1
- H = 90/5 = 18
- GH = 18
- $h_1 = (15 + 15) / 5 = 6$
- $h_2 = 90 / 15 = 6$
- $F = g_1g_2h_1h_2 = 36 = 2GH$



BRANCHING EFFORT

- Introduce branching effort
 - Accounts for branching between stages in path

$$b = \frac{C_{\text{on path}} + C_{\text{off path}}}{C_{\text{on path}}}$$

$$B = \prod b_i$$

Note:

$$\prod h_i = BH$$

- Now we compute the path effort
 - F = GBH

MULTISTAGE DELAYS

Path Effort Delay

Path Parasitic Delay

Path Delay

$$D_F = \sum f_i$$

$$P = \sum p_i$$

$$D = \sum d_i = D_F + P$$

DESIGNING FAST CIRCUITS

Delay is smallest when each stage bears same effort

$$D = \sum d_i = D_F + P$$

Thus minimum delay of N stage path is

$$\hat{f} = g_i h_i = F^{\frac{1}{N}}$$

- This is a key result of logical effort
 - Find fastest possible delay
 - Doesn't require calculating gate sizes

GATE SIZES

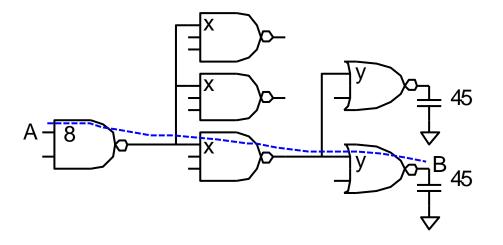
How wide should the gates be for least delay?

$$\hat{f} = gh = g \frac{C_{out}}{C_{in}}$$

$$\Rightarrow C_{in_i} = \frac{g_i C_{out_i}}{\hat{f}}$$

- Working backward, apply capacitance transformation to find input capacitance of each gate given load it drives.
- Check work by verifying input cap spec is met.

Select gate sizes x and y for least delay from A to B



Logical Effort

$$G = (4/3)*(5/3)*(5/3) = 100/27$$

Electrical Effort

H = 45/8

Branching Effort

B = 3 * 2 = 6

Path Effort

F = GBH = 125

Best Stage Effort

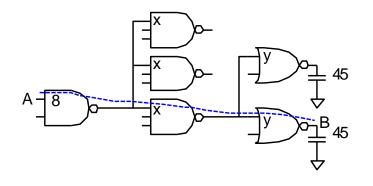
 $\hat{f} = \sqrt[3]{F} = 5$

Parasitic Delay

$$P = 2 + 3 + 2 = 7$$

Delay

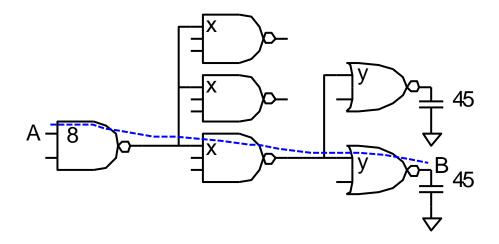
$$D = 3*5 + 7 = 22 = 4.4 \text{ FO}4$$



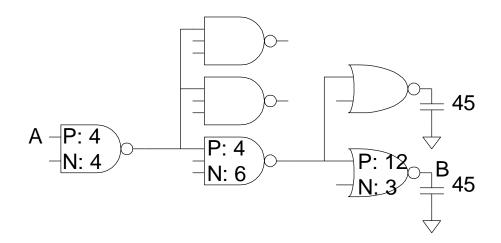
- Work backward for sizes
- y = 45 * (5/3) / 5 = 15
- x = (15*2)*(5/3)/5 = 10

$$\hat{f} = gh = g \frac{C_{out}}{C_{in}}$$

$$\Rightarrow C_{in_i} = \frac{g_i C_{out_i}}{\hat{f}}$$



- Work backward for sizes
- y = 45 * (5/3) / 5 = 15
- x = (15*2)*(5/3)/5 = 10

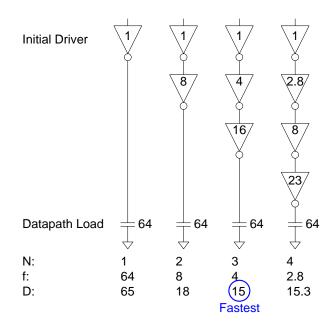


BEST NUMBER OF STAGES

- How many stages should a path use?
 - Minimizing number of stages is not always fastest
- Example: drive 64-bit datapath with unit inverter

• D =
$$NF^{1/N} + P$$

$$= N(64)^{1/N} + N$$



DERIVATION

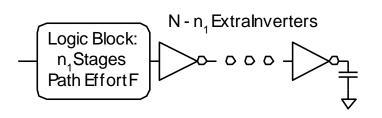
- Consider adding inverters to end of path
 - How many give least delay?

$$D = NF^{\frac{1}{N}} + \sum_{i=1}^{n_1} p_i + (N - n_1) p_{inv}$$

$$\frac{\partial D}{\partial N} = -F^{\frac{1}{N}} \ln F^{\frac{1}{N}} + F^{\frac{1}{N}} + p_{inv} = 0$$

$$\rho = F^{\frac{1}{N}}$$

$$p_{inv} + \rho (1 - \ln \rho) = 0$$

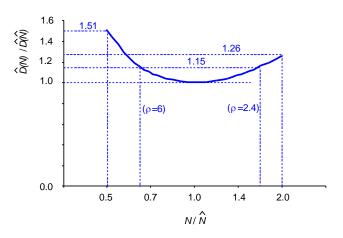


BEST STAGE EFFORT

- $p_{inv} + \rho(1 \ln \rho) = 0$ has no closed-form solution
- Neglecting parasitics ($p_{inv} = 0$), we find $\rho = 2.718$ (e)
- For $p_{inv} = 1$, solve numerically for $\rho = 3.59$

SENSITIVITY ANALYSIS

How sensitive is delay to using exactly the best number of stages?



- 2.4 < ρ < 6 gives delay within 15% of optimal
 - We can be sloppy!
 - I like $\rho = 4$

REVIEW OF DEFINITIONS

Term	Stage	Path
number of stages	1	N
logical effort	g	$G = \prod g_i$
electrical effort	$h = rac{C_{ m out}}{C_{ m in}}$	$H=rac{C_{ m out-path}}{C_{ m in-path}}$
branching effort	$b = \frac{C_{ ext{on-path}} + C_{ ext{off-path}}}{C_{ ext{on-path}}}$	$B = \prod b_i$
effort	f = gh	F = GBH
effort delay	f	$D_F = \sum f_i$
parasitic delay	p	$P = \sum p_i$
delay	d = f + p	$D = \sum d_i = D_F + P$

METHOD OF LOGICAL EFFORT

- 1) Compute path effort
- 2) Estimate best number of stages
- 3) Sketch path with N stages
- 4) Estimate least delay
- 5) Determine best stage effort

6) Find gate sizes

$$F = GBH$$

$$N = \log_4 F$$

$$D = NF^{\frac{1}{N}} + P$$

$$\hat{f} = F^{\frac{1}{N}}$$

$$C_{in_i} = \frac{g_i C_{out_i}}{\hat{f}}$$

LIMITS OF LOGICAL EFFORT

- Chicken and egg problem
 - Need path to compute G
 - But don't know number of stages without G
- Simplistic delay model
 - Neglects input rise time effects
- Interconnect
 - Iteration required in designs with wire
- Maximum speed only
 - Not minimum area/power for constrained delay

SUMMARY

- Logical effort is useful for thinking of delay in circuits
 - Numeric logical effort characterizes gates
 - NANDs are faster than NORs in CMOS.
 - Paths are fastest when effort delays are ~4
 - Path delay is weakly sensitive to stages, sizes
 - But using fewer stages doesn't mean faster paths
 - Delay of path is about log₄F FO4 inverter delays
 - Inverters and NAND2 best for driving large caps
- Provides language for discussing fast circuits
 - But requires practice to master

