

Charge Pump Design Additional Slides

Vishal Saxena ECE, Boise State University

Nov 02, 2010

Vishal Saxena | Charge Pump Design

Adjust bulk voltage to get rid of the body effect [3].

Better than Dickson CP, but V_{THN0} drop still exists.

Adjust bulk voltage to get rid of the body effect [3].

Better than Dickson CP, but V_{THN0} drop still exists.

Non-Overlapping Clocks: State Machine

State Diagram

Truth Table								
CK	ϕ_1	ϕ_2	$\phi_1^{'}$	$\phi_{2}^{'}$				
0	0	1	0	1				
1	0	1	0	0				
1	0	0	1	0				
1	1	0	1	0				
0	1	0	0	0				
0	0	0	0	1				

Non-Overlapping Clocks: Karnaugh Ma

$\operatorname{CK}/\phi_1 \phi_2$	00	01	11	10
0	0	0	Х	0
1	1	0	Х	1

$\operatorname{CK}/\phi_1 \phi_2$	00	01	11	10
0	1	1	Х	0
1	0	0	Х	0

$$\phi_1' = CK \cdot \overline{\phi_2} = \overline{CK \cdot \overline{\phi_2}}$$

$$\phi_2' = \overline{CK} \cdot \overline{\phi_1} = \overline{\overline{CK} \cdot \overline{\phi_1}}$$

Vishal Saxena | Charge Pump Design

Implements logic
$$\phi'_1 = CK \cdot \overline{\phi_2}$$
 and $\phi'_2 = \overline{CK} \cdot \overline{\phi_1}$

Non-overlap time is set by the NAND's t_{pLH}

Implements logic \$\phi_1' = CK \cdot \overline{\phi_2}\$ and \$\phi_2' = \overline{CK} \cdot \overline{\phi_1}\$
Non-overlap time is set by the NAND's \$\phi_{pLH}\$

Can increase non-overlap time be inserting extra delay

■ Insert a matched delay to the inverter for perfect timing.

Another topology with larger non-overlap time.

• The following circuit generates four non-overlapping clock phases.

• The following circuit generates four non-overlapping clock phases.

Regulated Charge Pump

- A sensing circuit compares the pump output to a reference and enables the clock
- A simple method is to switch the ring oscillator on and off
 - large ripples in the output

- Feedback to regulate the charge pump output to a desired voltage
- A sensing circuit compares the pump output to a reference and enables the clock
- A simple method is to switch the ring oscillator on and off
 - large ripples in the output

- Feedback to regulate the charge pump output to a desired voltage
- A sensing circuit compares the pump output to a reference and enables the clock
- A simple method is to switch the ring oscillator on and off

large ripples in the output

- Feedback to regulate the charge pump output to a desired voltage
- A sensing circuit compares the pump output to a reference and enables the clock
- A simple method is to switch the ring oscillator on and off
 - large ripples in the output

Pump Regulation: Capacitor Divider

• Cap values C_1 and C_2 change with parasitics.

- Capacitive loading on the pump (may be insignificant w.r.t. $C_L)$
- Faster feedback control.

Pump Regulation: Capacitor Divider

- Cap values C_1 and C_2 change with parasitics.
- \blacksquare Capacitive loading on the pump (may be insignificant w.r.t. $C_L)$
- Faster feedback control.

Pump Regulation: Capacitor Divider

- Cap values C_1 and C_2 change with parasitics.
- \blacksquare Capacitive loading on the pump (may be insignificant w.r.t. $C_L)$
- Faster feedback control.

- \blacksquare Use large resistors \rightarrow Large layout area
- RC delay

Pump Regulation: Resistor Divider

Resistors may load the pump output.

• Use large resistors \rightarrow Large layout area

Figure 4-20 Resistive divider feedback control.

Pump Regulation: Resistor Divider

 \blacksquare Use large resistors \rightarrow Large layout area

Figure 4-20 Resistive divider feedback control.

• Use a NAND gate in the ring, while ensuring there are odd number of inverting stages

• Use a voltage-controlled oscillator (VCO) for smoother regulation of the output[5].

cleaner VCO switching leads to much lower pump output ripples.

- Use a voltage-controlled oscillator (VCO) for smoother regulation of the output[5].
 - cleaner VCO switching leads to much lower pump output ripples.

Regulation with Dynamic Buffer

• Automatically tune the buffer strength to regulate the output[5].

Baker, R. J., CMOS Circuit Design, Layout and Simulation, revised 2nd Edition, Wiley-IEEE, 2008.

Pan, F., Samaddar, T., Charge Pump Circuit Design, McGraw-Hill, 2006.

Shin, J., Chung, I., Park, Y., Min, H., "A new charge pump without degradation on threshold voltage due to body effect," IEEE SBCCI, Aug 2003.

Soldera, J., Boas, A., Olmos, A., "A low-ripple fully integrated charge pump regulator" IEEE JSSC, vol. 41, no. 2, Feb 2006.

Lee, J-Y et al, "A regulated charpe pump with small ripple voltage and fast start-up," IEEE JSSC, vol. 41, no. 2, Feb 2006.

Palumbo, G., Pappalardo, D., "Charge Pump Circuits: An overview on design strategies and topologies ," IEEE Circuits and Systems Magazine, Q1 2010