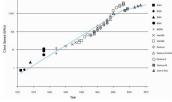

CMOS Scaling

Vishal Saxena ECE, Boise State University


Oct 18, 2010

Vishal Saxena | CMOS Scaling

Moore's law today

Clock speeds have improved

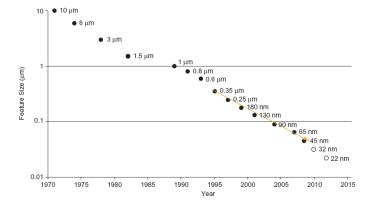
- The increase in density of transistors is achieved by CMOS scaling
 - the minimum channel length (L) is roughly scaled by a factor $S = \frac{1}{\sqrt{2}}$ in every generation
- Two paradigms for device scaling:
 - **1**) Constant field scaling
 - 2) Constant voltage scaling
- In practice a combination of both is used to scale CMOS devices

- The increase in density of transistors is achieved by CMOS scaling
 - the minimum channel length (L) is roughly scaled by a factor $S = \frac{1}{\sqrt{2}}$ in every generation
- Two paradigms for device scaling:
 - 1) Constant field scaling
 - 2) Constant voltage scaling
- In practice a combination of both is used to scale CMOS devices

- The increase in density of transistors is achieved by CMOS scaling
 - the minimum channel length (L) is roughly scaled by a factor $S = \frac{1}{\sqrt{2}}$ in every generation
- Two paradigms for device scaling:
 - 1) Constant field scaling
 - 2) Constant voltage scaling
 - In practice a combination of both is used to scale CMOS devices

- The increase in density of transistors is achieved by CMOS scaling
 - the minimum channel length (*L*) is roughly scaled by a factor $S = \frac{1}{\sqrt{2}}$ in every generation
- Two paradigms for device scaling:
 - 1) Constant field scaling
 - 2) Constant voltage scaling
 - In practice a combination of both is used to scale CMOS devices

- The increase in density of transistors is achieved by CMOS scaling
 - the minimum channel length (L) is roughly scaled by a factor $S = \frac{1}{\sqrt{2}}$ in every generation
- Two paradigms for device scaling:
 - 1) Constant field scaling
 - 2) Constant voltage scaling
 - In practice a combination of both is used to scale CMOS devices



- The increase in density of transistors is achieved by CMOS scaling
 - the minimum channel length (L) is roughly scaled by a factor $S = \frac{1}{\sqrt{2}}$ in every generation
- Two paradigms for device scaling:
 - 1) Constant field scaling
 - 2) Constant voltage scaling
- In practice a combination of both is used to scale CMOS devices

CMOS Nodes with Scaling

Moore's Law CMOS Scaling

Influence of Scaling on CMOS Devices

Parameter	Sensitivity	Scaling Factor
Length: L		S
Width: W		S
GOX thickness: t_{ox}		S
Supply Voltage: V_{DD}		S
Threshold voltage: $V_{THN/P}$		S
Substrate doping: N_A		1/S
β	$\frac{W}{L} \frac{1}{t_{ox}}$	1/S
Current: Ion	$\beta (V_{DD} - V_{TH})^2$	S
Resistance: R	$\frac{V_{DD}}{I_{on}}$	1
Gate capacitance: C_{ox}	$\frac{WL}{t_{ox}}$	S
Gate delay: τ	$R \cdot C_{ox}$	S
Clock frequency: f_{clk}	$\frac{1}{\tau}$	1/S

Table: CMOS Scaling

Moore's Law CMOS Scaling

Influence of Scaling on CMOS Devices contd.

Parameter	Sensitivity	Scaling Factor
Dynamic power dissipation: P	$CV^2 f_{clk}$	<i>S</i> ²
Chip area: A	\sim WL	<i>S</i> ²
Power density	P/A	1
Current density	I _{on} /A	1/S

Table:CMOS Scaling contd.

Vishal Saxena | CMOS Scaling