

CMOS Inverter Additional Slides

Vishal Saxena ECE, Boise State University

Oct 21, 2010

Region	NMOS	PMOS
A	Cutoff	Triode
В	Saturation	Triode
С	Saturation	Saturation
D	Triode	Saturation
Е	Triode	Cutoff

Noise Margin

- How much noise can a gate input see before it does not recognize the output?
 - Noise margins of a digital gate indicate how well it will perform with noisy input

Noise Margin

- How much noise can a gate input see before it does not recognize the output?
 - Noise margins of a digital gate indicate how well it will perform with noisy input

- $NM_H = V_{IH} V_{OH}$
 - HIGH noise margin
- $NM_I = V_{II} V_{OI}$
 - LOW noise margin
- $V_{IH} = \text{minimum HIGH input voltage}$
- $V_{II} = \text{maximum LOW input voltage}$
- $V_{OH} = \text{minimum HIGH output voltage}$
- $V_{OI} = \text{maximum LOW}$ output voltage

- $NM_H = V_{IH} V_{OH}$
 - HIGH noise margin
- $NM_I = V_{II} V_{OI}$
 - LOW noise margin
- $V_{IH} = \text{minimum HIGH input voltage}$
- $V_{II} = \text{maximum LOW input voltage}$
- $V_{OH} = \text{minimum HIGH output voltage}$
- $V_{OI} = \text{maximum LOW}$ output voltage

- $NM_H = V_{IH} V_{OH}$
 - HIGH noise margin
- $NM_I = V_{II} V_{OI}$
 - LOW noise margin
- $V_{IH} = \text{minimum HIGH input voltage}$
- $V_{II} = \text{maximum LOW input voltage}$
- $V_{OH} = \text{minimum HIGH output voltage}$
- $V_{OI} = \text{maximum LOW}$ output voltage

- $NM_H = V_{IH} V_{OH}$
 - HIGH noise margin
- $NM_I = V_{II} V_{OI}$
 - LOW noise margin
- $V_{IH} = \text{minimum } HIGH \text{ input voltage}$
- $V_{II} = \text{maximum LOW}$ input voltage
- $V_{OH} = \text{minimum HIGH output voltage}$
- $V_{OI} = \text{maximum LOW}$ output voltage

- NMH = VIH VOH
 - HIGH noise margin
- $NM_I = V_{II} V_{OI}$
 - LOW noise margin
- $V_{IH} = \text{minimum } HIGH \text{ input voltage}$
- $V_{II} = \text{maximum LOW input voltage}$
- $V_{OH} = \text{minimum HIGH output voltage}$
- $V_{Ol} = \text{maximum LOW}$ output voltage

- NMH = VIH VOH
 - HIGH noise margin
- $NM_I = V_{II} V_{OI}$
 - LOW noise margin
- $V_{IH} = \text{minimum HIGH input voltage}$
- $V_{II} = \text{maximum LOW}$ input voltage
- $V_{OH} = \text{minimum HIGH output voltage}$
- $V_{OI} = \text{maximum LOW}$ output voltage

- To maximize noise margins, select logic levels at
 - unity gain point of DC transfer characteristics

- To maximize noise margins, select logic levels at
 - unity gain point of DC transfer characteristics

- To maximize noise margins, select logic levels at
 - unity gain point of DC transfer characteristics

- To maximize noise margins, select logic levels at
 - unity gain point of DC transfer characteristics
 - regenerate the logic levels (gain>1)

- To maximize noise margins, select logic levels at
 - unity gain point of DC transfer characteristics
 - regenerate the logic levels (gain>1)

- If $\frac{\beta_n}{\beta_p} \neq 1$, inverter's switching point (V_{SP}) will move from the ideal value of $\frac{V_{DD}}{2}$
 - called skewed gate

Inverter Layout

- Two styles for laying out an inverter
- Power and ground routed on metal-1 using standard frame

Inverter Layout

- Two styles for laying out an inverter
- Power and ground routed on metal-1 using standard frame

Latch-up

- Fast voltage pulses can feed-through the C1 or C2 and turn on the parasitic BJT
- If any of the BJT is turned on, it creates a positive feedback loop

Cross-sectional view of an inverter showing parasitic bipolar transistors and resistors

Schematic for understanding latch-up

Latch-up

- Fast voltage pulses can feed-through the C1 or C2 and turn on the parasitic BJT
- If any of the BJT is turned on, it creates a positive feedback loop
 - eventually both the BJTs are turned fully on and the circuit is stuck in that state (undesired)

Cross-sectional view of an inverter showing parasitic bipolar transistors and resistors

Schematic for understanding latch-up

Latch-up

- Fast voltage pulses can feed-through the C1 or C2 and turn on the parasitic BJT
- If any of the BJT is turned on, it creates a positive feedback loop
 - eventually both the BJTs are turned fully on and the circuit is stuck in that state (undesired)

Cross-sectional view of an inverter showing parasitic bipolar transistors and resistors

Schematic for understanding latch-up

Latch-up prevention

- Reduce the well series resistances (RW1 and RW2) by using as many contacts as possible and closer to the inverter
 - can also use guard ring structures
- Use slow rise and fall times in the logic
- Reduce drain areas to reduce C1 and C2

Cross-sectional view of an inverter showing parasitic

Latch-up prevention

- Reduce the well series resistances (RW1 and RW2) by using as many contacts as possible and closer to the inverter
 - can also use guard ring structures
- Use slow rise and fall times in the logic
- Reduce drain areas to reduce C1 and C2

Cross-sectional view of an inverter showing parasitic

Schematic for understanding latch-up \Box

Latch-up prevention

- Reduce the well series resistances (RW1 and RW2) by using as many contacts as possible and closer to the inverter
 - can also use guard ring structures
- Use slow rise and fall times in the logic
- Reduce drain areas to reduce C1 and C2

Cross-sectional view of an inverter showing parasitic

Schematic for understanding latch-up \Box

- Reduce the well series resistances (RW1 and RW2) by using as many contacts as possible and closer to the inverter
 - can also use guard ring structures
- Use slow rise and fall times in the logic
- Reduce drain areas to reduce C1 and C2

Cross-sectional view of an inverter showing parasitic

Schematic for understanding latch-up \Box

- In nm-CMOS, assuming that for equal drive strengths $W_p = 2W_n$
 - effective switching resistance of PMOS & NMOS = R
 - in MOSFETs switching model assume that $C_{in} = C_{out} = C$
- Propgataion delay $(d) = t_{pLH} = t_{pHL} = 0.7 \times R(C_{outp} + C_{outn}) \triangleq 0.7 \times 3RC$
- Can express delay in a process-independent unit
 - $d = d_{abs}/0.7\tau$
 - d = 1 for an inverter with no load

- In nm-CMOS, assuming that for equal drive strengths $W_p = 2W_n$
 - \blacksquare effective switching resistance of PMOS & NMOS = R
 - in MOSFETs switching model assume that $C_{in} = C_{out} = C$
 - Propgataion delay $(d) = t_{pLH} = t_{pHL} = 0.7 \times R(C_{outp} + C_{outn}) \triangleq 0.7 \times 3RC$
- Can express delay in a process-independent unit
 - $d = d_{abs}/0.7\tau$
 - d = 1 for an inverter with no load

- In nm-CMOS, assuming that for equal drive strengths $W_p = 2W_n$
 - \blacksquare effective switching resistance of PMOS & NMOS = R
 - in MOSFETs switching model assume that $C_{in} = C_{out} = C$
 - Propgataion delay $(d) = t_{pLH} = t_{pHL} = 0.7 \times R(C_{outp} + C_{outn}) \triangleq 0.7 \times 3RC$
- Can express delay in a process-independent unit
 - $d = d_{abs}/0.7\tau$
 - d = 1 for an inverter with no load

- In nm-CMOS, assuming that for equal drive strengths $W_p = 2W_n$
 - effective switching resistance of PMOS & NMOS = R
 - in MOSFETs switching model assume that $C_{in} = C_{out} = C$
- Propgataion delay $(d) = t_{pLH} = t_{pHL} = 0.7 \times R(C_{outp} + C_{outn}) \triangleq 0.7 \times 3RC$
 - $\Rightarrow \tau = 3RC$
- Can express delay in a process-independent unit
 - $d = d_{abs}/0.7\tau$
 - d=1 for an inverter with no load

- In nm-CMOS, assuming that for equal drive strengths $W_p = 2W_n$
 - effective switching resistance of PMOS & NMOS = R
 - in MOSFETs switching model assume that $C_{in} = C_{out} = C$
- Propgataion delay $(d) = t_{pLH} = t_{pHL} = 0.7 \times R(C_{outp} + C_{outn}) \triangleq 0.7 \times 3RC$ $\Rightarrow \tau = 3RC$
- Can express delay in a process-independent unit
 - $d = d_{abs}/0.7\tau$
 - d = 1 for an inverter with no load

Delay in a Logic Gate

■ Can express delay in a process-independent unit

 \blacksquare Delay has two components: d = f + p

■ h: electrical effort=
$$C_{out}/C_{int}$$

■
$$d = d_{abs}/\tau$$
 $\tau = 0.7 \times R(C_{outp} + C_{outn}) \triangleq 0.7 \times 3RC$

- Delay has two components: d = f + p
 - \blacksquare f: effort delay =g·h (a.k.a. stage effort)

again has two components:

■ g: logical effort

measures relative ability of gate to deliver currentg=1 for inverter (baseline circuit)

■ h: electrical effort= C_{out}/C_{in}

ratio of output to input capacitancesometimes called fanout

■ p: parasitic delay

represents delay of gate driving no load

■
$$d = d_{abs}/\tau$$
 $\tau = 0.7 \times R(C_{outp} + C_{outn}) \triangleq 0.7 \times 3RC$

- Delay has two components: d = f + p
 - f: effort delay $=g \cdot h$ (a.k.a. stage effort)
 - again has two components:
 - g: logical effort

measures relative ability of gate to deliver current
 g=1 for inverter (baseline circuit)

- h: electrical effort= C_{out}/C_{in}
 - ratio of output to input capacitancesometimes called fanout
- p: parasitic delay

represents delay of gate driving no load

■
$$d = d_{abs}/\tau$$
 $\tau = 0.7 \times R(C_{outp} + C_{outn}) \triangleq 0.7 \times 3RC$

- Delay has two components: d = f + p
 - f: effort delay $=g \cdot h$ (a.k.a. stage effort)
 - again has two components:
 - g: logical effort

measures relative ability of gate to deliver currentg=1 for inverter (baseline circuit)

- h: electrical effort= C_{out}/C_{in}
 - ratio of output to input capacitancesometimes called fanout
- p: parasitic delay

represents delay of gate driving no load

■
$$d = d_{abs}/\tau$$
 $\tau = 0.7 \times R(C_{outp} + C_{outn}) \triangleq 0.7 \times 3RC$

- Delay has two components: d = f + p
 - f: effort delay = $g \cdot h$ (a.k.a. stage effort)
 - again has two components:
 - g: logical effort
 - measures relative ability of gate to deliver current
 - g=1 for inverter (baseline circuit)
 - h: electrical effort= C_{out}/C_{in}
 - ratio of output to input capacitance
 - sometimes called fanout
 - p: parasitic delay
 - represents delay of gate driving no load
 - set by internal parasitic capacitance

■
$$d = d_{abs}/\tau$$
 $\tau = 0.7 \times R(C_{outp} + C_{outn}) \triangleq 0.7 \times 3RC$

- Delay has two components: d = f + p
 - f: effort delay =g·h (a.k.a. stage effort)
 - again has two components:
 - g: logical effort
 - measures relative ability of gate to deliver current
 - g=1 for inverter (baseline circuit)
 - h: electrical effort= C_{out}/C_{in}
 - ratio of output to input capacitance
 - sometimes called fanout
 - p: parasitic delay
 - represents delay of gate driving no load
 - set by internal parasitic capacitance

Delay in a Logic Gate

■
$$d = d_{abs}/\tau$$
 $\tau = 0.7 \times R(C_{outp} + C_{outn}) \triangleq 0.7 \times 3RC$

- Delay has two components: d = f + p
 - f: effort delay = $g \cdot h$ (a.k.a. stage effort)
 - again has two components:
 - g: logical effort
 - measures relative ability of gate to deliver current
 - g=1 for inverter (baseline circuit)
 - h: electrical effort= C_{out}/C_{in}
 - ratio of output to input capacitance
 - sometimes called fanout
 - p: parasitic delay
 - represents delay of gate driving no load
 - set by internal parasitic capacitance

■
$$d = d_{abs}/\tau$$
 $\tau = 0.7 \times R(C_{outp} + C_{outn}) \triangleq 0.7 \times 3RC$

- Delay has two components: d = f + p
 - f: effort delay =g·h (a.k.a. stage effort)
 - again has two components:
 - g: logical effort
 - measures relative ability of gate to deliver current
 - g=1 for inverter (baseline circuit)
 - h: electrical effort= C_{out}/C_{in}
 - ratio of output to input capacitance
 - sometimes called fanout
 - p: parasitic delay
 - represents delay of gate driving no load
 - set by internal parasitic capacitance

■
$$d = d_{abs}/\tau$$
 $\tau = 0.7 \times R(C_{outp} + C_{outn}) \triangleq 0.7 \times 3RC$

- Delay has two components: d = f + p
 - f: effort delay = $g \cdot h$ (a.k.a. stage effort)
 - again has two components:
 - g: logical effort
 - measures relative ability of gate to deliver current
 - g=1 for inverter (baseline circuit)
 - h: electrical effort= C_{out}/C_{in}
 - ratio of output to input capacitance
 - sometimes called fanout
 - p: parasitic delay
 - represents delay of gate driving no load
 - set by internal parasitic capacitance

■
$$d = d_{abs}/\tau$$
 $\tau = 0.7 \times R(C_{outp} + C_{outn}) \triangleq 0.7 \times 3RC$

- Delay has two components: d = f + p
 - f: effort delay = $g \cdot h$ (a.k.a. stage effort)
 - again has two components:
 - g: logical effort
 - measures relative ability of gate to deliver current
 - g=1 for inverter (baseline circuit)
 - h: electrical effort= C_{out}/C_{in}
 - ratio of output to input capacitance
 - sometimes called fanout
 - p: parasitic delay
 - represents delay of gate driving no load
 - set by internal parasitic capacitance

Delay in a Logic Gate

■
$$d = d_{abs}/\tau$$
 $\tau = 0.7 \times R(C_{outp} + C_{outn}) \triangleq 0.7 \times 3RC$

- Delay has two components: d = f + p
 - f: effort delay = $g \cdot h$ (a.k.a. stage effort)
 - again has two components:
 - g: logical effort
 - measures relative ability of gate to deliver current
 - g=1 for inverter (baseline circuit)
 - h: electrical effort= C_{out}/C_{in}
 - ratio of output to input capacitance
 - sometimes called fanout
 - p: parasitic delay
 - represents delay of gate driving no load
 - set by internal parasitic capacitance

Delay:
$$d = f + p$$

Note: In these slides it is assumed that the MOSFET capacitance model is $C_{in} = C_{out} = C$, and that $W_p = 2W_n$ for equal drive strengths for the PMOS and NMOS in the inverter.

∢ロト ∢御 ト ∢ 重 ト ∢ 重 ・ り Q ©

Delay:
$$d = f + p$$

$$= gh + p$$

Note: In these slides it is assumed that the MOSFET capacitance model is $C_{in} = C_{out} = C$, and that $W_p = 2W_n$ for equal drive strengths for the PMOS and NMOS in the inverter.

- Logical Effort: g = 1
- \blacksquare Electrical Effort: h = 4
- Parasitic Delay: p = 1
- Stage Delay: d = 5
- The FO4 delay is about 300 ps in 0.5 µm process 15 ps in a 65 nm process

- Logical Effort: g = 1
- \blacksquare Electrical Effort: h = 4
- Parasitic Delay: p = 1
- Stage Delay: d = 5
- The FO4 delay is about 300 ps in 0.5 µm process 15 ps in a 65 nm process

- Logical Effort: g = 1
- \blacksquare Electrical Effort: h = 4
- Parasitic Delay: p = 1
- Stage Delay: d = 5
- The FO4 delay is about 300 ps in 0.5 µm process 15 ps in a 65 nm process

- Logical Effort: g = 1
- \blacksquare Electrical Effort: h = 4
- Parasitic Delay: p = 1
- Stage Delay: d = 5
- The FO4 delay is about 300 ps in 0.5 µm process 15 ps in a 65 nm process

- Logical Effort: g = 1
- \blacksquare Electrical Effort: h = 4
- Parasitic Delay: p = 1
- Stage Delay: d = 5
- The FO4 delay is about 300 ps in 0.5 μm process 15 ps in a 65 nm process

- Logical Effort: g = 1
- \blacksquare Electrical Effort: h = 4
- Parasitic Delay: p = 1
- Stage Delay: d = 5
- \blacksquare The FO4 delay is about 300 ps in 0.5 μm process 15 ps in a 65 nm process

- Logical effort generalizes to multistage networks
- Path Logical Effort $G = \prod g_i$
- Path Electrical Effort $H = \frac{C_{out-path}}{C_{in-path}}$
- Path Effort $F = \prod f_i = \prod g_i h_i$
- For a single path (no branching): $F = G \cdot H$

- Logical effort generalizes to multistage networks
- Path Logical Effort $G = \prod g_i$
- Path Electrical Effort $H = \frac{C_{out-path}}{C_{in-path}}$
- Path Effort $F = \prod f_i = \prod g_i h_i$
- For a single path (no branching): $F = G \cdot H$

- Logical effort generalizes to multistage networks
- Path Logical Effort $G = \prod g_i$
- Path Electrical Effort $H = \frac{C_{out-path}}{C_{in-path}}$
- Path Effort $F = \prod f_i = \prod g_i h_i$
- For a single path (no branching): $F = G \cdot H$

- Logical effort generalizes to multistage networks
- Path Logical Effort $G = \prod g_i$
- Path Electrical Effort $H = \frac{C_{out-path}}{C_{in-path}}$
- Path Effort $F = \prod f_i = \prod g_i h_i$
- For a single path (no branching): $F = G \cdot H$

- Logical effort generalizes to multistage networks
- Path Logical Effort $G = \prod g_i$
- Path Electrical Effort $H = \frac{C_{out-path}}{C_{in-path}}$
- Path Effort $F = \prod f_i = \prod g_i h_i$
- For a single path (no branching): $F = G \cdot H$

Multistage Delays

- Path Effort Delay $D_F = \sum f_i$
- Path Parasitic Delay $P = \sum p_i$
- Path Delay $D = \sum d_i = D_F + P$

Multistage Delays

- Path Effort Delay $D_F = \sum f_i$
- Path Parasitic Delay $P = \sum p_i$
- Path Delay $D = \sum d_i = D_F + P$

Multistage Delays

- Path Effort Delay $D_F = \sum f_i$
- Path Parasitic Delay $P = \sum p_i$
- Path Delay $D = \sum d_i = D_F + P$

- $D = \sum d_i = D_F + P$
- Delay is smallest when each stage bears same effort

$$\hat{f} = g_i h_i = F^{\frac{1}{N}}$$

$$\blacksquare D = NF^{\dagger} + P$$

- This is a key result of logical effort
 - find fastest possible delay
 - doesn't require calculating gate siz

- $D = \sum_i d_i = D_F + P$
- Delay is smallest when each stage bears same effort

$$\hat{f} = g_i h_i = F^{\frac{1}{N}}$$

$$D = NF^{\dagger} + P$$

- This is a key result of logical effort
 - find fastest possible delay

$$D = \sum_i d_i = D_F + P$$

■ Delay is smallest when each stage bears same effort

$$\hat{f} = g_i h_i = F^{\frac{1}{N}}$$

$$D = NF^{\frac{1}{N}} + P$$

- This is a key result of logical effort
 - find fastest possible delay
 - doesn't require calculating gate size

Designing Fast Circuits

- $D = \sum_i d_i = D_F + P$
- Delay is smallest when each stage bears same effort

$$\hat{f} = g_i h_i = F^{\frac{1}{N}}$$

■ Thus minimum delay of N stage path is

$$D = NF^{\frac{1}{N}} + P$$

■ This is a key result of logical effort

ind fastest possible delay

Designing Fast Circuits

- $D = \sum_i d_i = D_F + P$
- Delay is smallest when each stage bears same effort

$$\hat{f} = g_i h_i = F^{\frac{1}{N}}$$

$$D = NF^{\frac{1}{N}} + P$$

- This is a key result of logical effort
 - find fastest possible delay
 - doesn't require calculating gate sizes

■ How wide should the gates be for least delay?

$$\hat{f} = gh = g \frac{C_{out}}{C}$$

$$C_{in_i} = \frac{g_i C_{out}}{\hat{f}}$$

- Working backward, apply capacitance transformation to find input capacitance of each gate given load it drives.
- Check work by verifying input cap spec is met.

- How wide should the gates be for least delay?
 - $\hat{f} = gh = g\frac{C_{out}}{C_{i-1}}$
 - $C_{in_i} = \frac{g_i C_{out}}{\hat{f}}$
- Working backward, apply capacitance transformation to find input capacitance of each gate given load it drives.
- Check work by verifying input cap spec is met.

- How wide should the gates be for least delay?
 - $\hat{f} = gh = g\frac{C_{out}}{C_{in}}$
 - $C_{in_i} = \frac{g_i C_{out}}{\hat{f}}$
- Working backward, apply capacitance transformation to find input capacitance of each gate given load it drives.
- Check work by verifying input cap spec is met.

- How wide should the gates be for least delay?
 - $\hat{f} = gh = g\frac{C_{out}}{C_{in}}$
 - $C_{in_i} = \frac{g_i C_{out}}{\hat{f}}$
- Working backward, apply capacitance transformation to find input capacitance of each gate given load it drives.
- Check work by verifying input cap spec is met.

- How wide should the gates be for least delay?
 - $\hat{f} = gh = g\frac{C_{out}}{C_{in}}$
 - $C_{in_i} = \frac{g_i C_{out}}{\hat{f}}$
- Working backward, apply capacitance transformation to find input capacitance of each gate given load it drives.
- Check work by verifying input cap spec is met.

- How many stages should a buffer use?
 - Minimizing number of stages is not always fastest
- Example: drive $64 \times C$ load with unit inverter D = NFh + P

- How many stages should a buffer use?
 - Minimizing number of stages is not always fastest
- load with unit inverter $D = NE^{\frac{1}{2}} + P$

- How many stages should a buffer use?
 - Minimizing number of stages is not always fastest
- Example: drive $64 \times C$ load with unit inverter

$$D = NF^{\frac{1}{N}} + P$$

$$= N(64)^{\frac{1}{N}} + N$$

N:

D

- How many stages should a buffer use?
 - Minimizing number of stages is not always fastest
- Example: drive $64 \times C$ load with unit inverter

$$D = NF^{\frac{1}{N}} + P$$

$$= N(64)^{\frac{1}{N}} + N$$

- How many stages should a buffer use?
 - Minimizing number of stages is not always fastest
- Example: drive $64 \times C$ load with unit inverter

$$D = NF^{\frac{1}{N}} + P$$

$$= N(64)^{\frac{1}{N}} + N$$

- How many stages should a buffer use?
 - Minimizing number of stages is not always fastest
- Example: drive $64 \times C$ load with unit inverter

$$D = NF^{\frac{1}{N}} + P$$

$$= N(64)^{\frac{1}{N}} + N$$

- How many stages should a buffer use?
 - Minimizing number of stages is not always fastest
- Example: drive $64 \times C$ load with unit inverter

$$D = NF^{\frac{1}{N}} + P$$

$$= N(64)^{\frac{1}{N}} + N$$

- How many stages should a buffer use?
 - Minimizing number of stages is not always fastest
- Example: drive $64 \times C$ load with unit inverter

$$D = NF^{\frac{1}{N}} + P$$

$$= N(64)^{\frac{1}{N}} + N$$

- How many stages should a buffer use?
 - Minimizing number of stages is not always fastest
- Example: drive $64 \times C$ load with unit inverter

$$D = NF^{\frac{1}{N}} + P$$

$$= N(64)^{\frac{1}{N}} + N$$

- How many stages should a buffer use?
 - Minimizing number of stages is not always fastest
- Example: drive $64 \times C$ load with unit inverter

$$D = NF^{\frac{1}{N}} + P$$

$$= N(64)^{\frac{1}{N}} + N$$

- How many stages should a buffer use?
 - Minimizing number of stages is not always fastest
- Example: drive $64 \times C$ load with unit inverter

$$D = NF^{\frac{1}{N}} + P$$

$$= N(64)^{\frac{1}{N}} + N$$

Derivation

- How many inverters in a buffer give the least delay?
- For N inverters: $D = NF^{\frac{1}{N}} + N \cdot p_{inv}$

p_{inv} is the parasitic delay of the inverter, F is the path efform
 Path Effort: F = G · H = Cot

- Minimize delay: $\frac{\partial D}{\partial N} = -F^{\frac{1}{N}} \cdot ln\left(F^{\frac{1}{N}}\right) + F^{\frac{1}{N}} + p_{inv} = 0$
- Define best stage effort $\rho = F^{\frac{1}{N}}$

 $p_{inv} + o(1 - lno) = 0$

Derivation

- How many inverters in a buffer give the least delay?
- For N inverters: $D = NF^{\frac{1}{N}} + N \cdot p_{inv}$
 - p_{inv} is the parasitic delay of the inverter, F is the path effort
 - Path Effort: $F = G \cdot H = \frac{C_{out}}{C_{in1}}$
- Minimize delay: $\frac{\partial D}{\partial N} = -F^{\frac{1}{N}} \cdot ln\left(F^{\frac{1}{N}}\right) + F^{\frac{1}{N}} + p_{inv} = 0$
- Define best stage effort $\rho = F^{\frac{1}{N}}$
 - $p_{inv} + o(1 lno) = 0$

- How many inverters in a buffer give the least delay?
- For N inverters: $D = NF^{\frac{1}{N}} + N \cdot p_{inv}$
 - \blacksquare p_{inv} is the parasitic delay of the inverter, F is the path effort
 - Path Effort: $F = G \cdot H = \frac{C_{out}}{C_{in1}}$
- Minimize delay: $\frac{\partial D}{\partial N} = -F^{\frac{1}{N}} \cdot ln\left(F^{\frac{1}{N}}\right) + F^{\frac{1}{N}} + p_{inv} = 0$
- Define best stage effort $\rho = F^{\frac{1}{N}}$
 - $\rho_{inv} + \rho(1 ln\rho) = 0$

Derivation

- How many inverters in a buffer give the least delay?
- For N inverters: $D = NF^{\frac{1}{N}} + N \cdot p_{inv}$
 - p_{inv} is the parasitic delay of the inverter, F is the path effort
 - Path Effort: $F = G \cdot H = \frac{C_{out}}{C_{in1}}$
- Minimize delay: $\frac{\partial D}{\partial N} = -F^{\frac{1}{N}} \cdot ln\left(F^{\frac{1}{N}}\right) + F^{\frac{1}{N}} + p_{inv} = 0$
- Define best stage effort $\rho = F^{\frac{1}{N}}$
 - $p_{inv} + \rho(1 ln\rho) = 0$

- How many inverters in a buffer give the least delay?
- For N inverters: $D = NF^{\frac{1}{N}} + N \cdot p_{inv}$
 - p_{inv} is the parasitic delay of the inverter, F is the path effort
 - Path Effort: $F = G \cdot H = \frac{C_{out}}{C_{in1}}$
- Minimize delay: $\frac{\partial D}{\partial N} = -F^{\frac{1}{N}} \cdot ln\left(F^{\frac{1}{N}}\right) + F^{\frac{1}{N}} + p_{inv} = 0$
- Define best stage effort $\rho = F^{\frac{1}{N}}$

- How many inverters in a buffer give the least delay?
- For N inverters: $D = NF^{\frac{1}{N}} + N \cdot p_{inv}$
 - \blacksquare p_{inv} is the parasitic delay of the inverter, F is the path effort
 - Path Effort: $F = G \cdot H = \frac{C_{out}}{C_{in1}}$
- Minimize delay: $\frac{\partial D}{\partial N} = -F^{\frac{1}{N}} \cdot ln\left(F^{\frac{1}{N}}\right) + F^{\frac{1}{N}} + p_{inv} = 0$
- Define best stage effort $\rho = F^{\frac{1}{N}}$
 - $p_{inv} + \rho(1 ln\rho) = 0$

- How many inverters in a buffer give the least delay?
- For N inverters: $D = NF^{\frac{1}{N}} + N \cdot p_{inv}$
 - \blacksquare p_{inv} is the parasitic delay of the inverter, F is the path effort
 - Path Effort: $F = G \cdot H = \frac{C_{out}}{C_{in1}}$
- Minimize delay: $\frac{\partial D}{\partial N} = -F^{\frac{1}{N}} \cdot ln\left(F^{\frac{1}{N}}\right) + F^{\frac{1}{N}} + p_{inv} = 0$
- Define best stage effort $\rho = F^{\frac{1}{N}}$
 - $p_{inv} + \rho(1 ln\rho) = 0$

Best Stage Effort

- $p_{inv} + \rho(1 ln\rho) = 0$ has no closed form solution
- Neglecting parasitics ($p_{inv} = 0$) we find $\rho = e = 2.718$
- For $p_{inv} = 1$, numerical solution yields $\rho = 3.59$
- Least delay for:
 - stage effort (or fan-out) equal to $\rho = F^{\frac{1}{N}} = 4$ ■ and when using $\hat{N} = log_{\rho}F$
 - $= log_4 F = log_4 \left(rac{C_{out}}{C_{int}}
 ight)$
- Rule of thumb: Fan-out of 4 (FO4) stage effort results in fastest path

- $p_{inv} + \rho(1 ln\rho) = 0$ has no closed form solution
- Neglecting parasitics $(p_{inv} = 0)$ we find $\rho = e = 2.718$
- For $p_{inv} = 1$, numerical solution yields $\rho = 3.59$
- Least delay for:
 - stage effort (or fan-out) equal to $\rho = F^{\#} = 4$ ■ and when using $\hat{N} = log_{\rho}F$
 - $= log_4 F = log_4 \left(\frac{c_{out}}{C_{int}} \right)$
- Rule of thumb: Fan-out of 4 (FO4) stage effort results in fastest path

- $p_{inv} + \rho(1 ln\rho) = 0$ has no closed form solution
- Neglecting parasitics ($p_{inv} = 0$) we find $\rho = e = 2.718$
- For $p_{inv} = 1$, numerical solution yields $\rho = 3.59$
- Least delay for:
 - m stage effort (or fan-out) equal to $\rho = F^{\hat{n}} = 4$ m and when using $\hat{N} = log_{\rho}F$
- Rule of thumb: Fan-out of 4 (FO4) stage effort results in fastest path

- $p_{inv} + \rho(1 ln\rho) = 0$ has no closed form solution
- Neglecting parasitics ($p_{inv} = 0$) we find $\rho = e = 2.718$
- For $p_{inv} = 1$, numerical solution yields $\rho = 3.59$
- Least delay for:
 - stage effort (or fan-out) equal to $\rho = F^{\frac{1}{N}} = 4$
 - \blacksquare and when using $\hat{N} = log_0 \hat{F}$
 - $= log_4 F = log_4 \left(\frac{C_{out}}{C_{in1}}\right)$
- Rule of thumb: Fan-out of 4 (FO4) stage effort results in fastest path

- $p_{inv} + \rho(1 ln\rho) = 0$ has no closed form solution
- Neglecting parasitics ($p_{inv} = 0$) we find $\rho = e = 2.718$
- For $p_{inv} = 1$, numerical solution yields $\rho = 3.59$
- Least delay for:
 - stage effort (or fan-out) equal to $\rho = F^{\frac{1}{N}} = 4$
 - \blacksquare and when using $\hat{N} = log_o F$
 - $= \log_4 F = \log_4 \left(\frac{C_{\text{out}}}{C_{\text{in1}}} \right)$
- Rule of thumb: Fan-out of 4 (FO4) stage effort results in fastest path

- $p_{inv} + \rho(1 ln\rho) = 0$ has no closed form solution
- Neglecting parasitics ($p_{inv} = 0$) we find $\rho = e = 2.718$
- For $p_{inv} = 1$, numerical solution yields $\rho = 3.59$
- Least delay for:
 - stage effort (or fan-out) equal to $\rho = F^{\frac{1}{N}} = 4$
 - and when using $\hat{N} = log_{\rho}F$
 - $= log_4 F = log_4 \left(\frac{C_{out}}{C_{in1}} \right)$
- Rule of thumb: Fan-out of 4 (FO4) stage effort results in fastest path

- $p_{inv} + \rho(1 ln\rho) = 0$ has no closed form solution
- Neglecting parasitics ($p_{inv} = 0$) we find $\rho = e = 2.718$
- For $p_{inv} = 1$, numerical solution yields $\rho = 3.59$
- Least delay for:
 - stage effort (or fan-out) equal to $\rho = F^{\frac{1}{N}} = 4$
 - \blacksquare and when using $\hat{N} = log_{\rho}F$
 - $= log_4 F = log_4 \left(\frac{C_{out}}{C_{in1}}\right)$
- Rule of thumb: Fan-out of 4 (FO4) stage effort results in fastest path

- $p_{inv} + \rho(1 ln\rho) = 0$ has no closed form solution
- Neglecting parasitics ($p_{inv} = 0$) we find $\rho = e = 2.718$
- For $p_{inv} = 1$, numerical solution yields $\rho = 3.59$
- Least delay for:
 - stage effort (or fan-out) equal to $\rho = F^{\frac{1}{N}} = 4$
 - \blacksquare and when using $\hat{N} = log_{\rho}F$
 - $= log_4 F = log_4 \left(\frac{C_{out}}{C_{in1}}\right)$
- Rule of thumb: Fan-out of 4 (FO4) stage effort results in fastest path

- How sensitive is delay to using exactly the best number of stages?
- $2.4 < \rho < 6$ gives delay within 15% of optimal

Sensitivity Analysis

- How sensitive is delay to using exactly the best number of stages?
- 2.4 < ρ < 6 gives delay within 15% of optimal
 - we can be sloppy!
 - Common standard is $\rho = 4$

Sensitivity Analysis

- How sensitive is delay to using exactly the best number of stages?
- 2.4 < ρ < 6 gives delay within 15% of optimal
 - we can be sloppy!
 - Common standard is $\rho = 4$

Sensitivity Analysis

- How sensitive is delay to using exactly the best number of stages?
- 2.4 < ρ < 6 gives delay within 15% of optimal
 - we can be sloppy!
 - Common standard is $\rho = 4$

Method of Logical Effort

■ Note that for the buffer design problem: G = B = 1, $g_i = 1$, and $F = H = \frac{C_{out}}{C_{in}}$

Minimizing Layout Area?

- Total transistor area can be roughly estimated as $A = A_1 \sum_{i=0}^{N-1} (\hat{f})^N$, where A_1 is the area of the first inverter.
- The area can be minimized for a specified delay (D_0) by optimizing the following set of constraints

minimize
$$\frac{\left(\hat{f}\right)^{N}-1}{\hat{f}-1}$$

for
$$D = P + N\hat{f} \le D_0$$

■ A fan-out of 8 can be used as a good trade-off to reduce layout area when designing large buffers.

- Total transistor area can be roughly estimated as $A = A_1 \sum_{i=0}^{N-1} (\hat{f})^N$, where A_1 is the area of the first inverter.
- The area can be minimized for a specified delay (D_0) by optimizing the following set of constraints

minimize
$$\frac{\left(\hat{f}\right)^{N}-1}{\hat{f}-1}$$

for
$$D = P + N\hat{f} \le D_0$$

■ A fan-out of 8 can be used as a good trade-off to reduce layout area when designing large buffers.

Minimizing Layout Area?

- Total transistor area can be roughly estimated as $A = A_1 \sum_{i=0}^{N-1} (\hat{f})^N$, where A_1 is the area of the first inverter.
- The area can be minimized for a specified delay (D_0) by optimizing the following set of constraints

$$minimize \frac{\left(\hat{f}\right)^{N} - 1}{\hat{f} - 1}$$

for
$$D = P + N\hat{f} \le D_0$$

■ A fan-out of 8 can be used as a good trade-off to reduce layout area when designing large buffers.

References I

N. Weste and D. Harris, CMOS VLSI Design: A circuits and systems perspective, 4th Ed., Addison-Wesley, 2010.

R. J. Baker, CMOS Circuit Design, Layout and Simulation, revised 2nd Edition, Wiley-IEEE, 2008.