Name: _____

FINAL EXAM

Closed book, closed notes. Calculators may be used for numeric computations only. All work is to be your own - show your work for maximum partial credit.

Data:

Use the following data in the problems unless otherwise:

MOSFETs

_				
	$V_{ m DD}$	1.8V		
	$\mu_n C_{ox}$	$200 \mu\text{A/V}^2$		
	$\mu_p C_{ox}$	$100 \mu A/V^2$		
	$V_{ m THN}$	0.4V		
	$ V_{ m THP} $	0.5V		

BJTs

$V_{\rm CC}$	2.5V
$eta_{ m npn}$	100
$eta_{ m pnp}$	50
Is	8×10 ⁻¹⁶ A
$V_{ m BE,nom}$	0.7V
V_{A}	5V

Fundamental Constants

$$k = 1.38 \times 10^{-23} \text{ J/K} \quad q = 1.60 \times 10^{-19} \text{ C}$$

 $v_T = \frac{kT}{q} = 26mV @ 300^{\circ}K$

Semiconductor constants for Si

$$E_g = 1.12eV$$
 $n_i(T = 300K) = 1.5 \times 10^{10} cm^{-3}$

PN junction Equations

$$V_{bi} = V_T \ln \left(\frac{N_A N_D}{n_i^2} \right) \quad N_A x_p = N_D x_n$$

$$I_D = I_S \left(e^{\frac{V_D}{v_T}} - 1 \right)$$

NMOS Equations

Cutoff region

$$I_D = 0, V_{GS} < V_{THN}$$

Triode (linear) region

$$I_{D} = \mu_{n} C_{ox} \frac{W}{L} \left((V_{GS} - V_{THN}) V_{DS} - \frac{V_{DS}^{2}}{2} \right)$$

$$V_{GS} > V_{THN}, V_{DS} < V_{GS} - V_{THN}$$

Saturation region

$$I_{D} = \frac{1}{2} \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{THN})^{2}$$

$$V_{GS} > V_{THN}, V_{DS} \ge V_{GS} - V_{THN}$$

Small-signal Parameters

$$g_{m} = \mu_{n} C_{ox} \frac{W}{L} (V_{GS} - V_{THN}) = \sqrt{2\mu_{n} C_{ox} \frac{W}{L} I_{D}}$$
$$= \frac{2I_{D}}{V_{GS} - V_{THN}}$$

$$r_0 = \frac{1}{\lambda I_D}$$

PMOS Equations

Assuming all positive convention, make the substitutions in the above equations: $\mu_n \rightarrow \mu_p$, $V_{GS} \rightarrow V_{SG}$, $V_{DS} \rightarrow V_{SD}$, and $V_{THN} \rightarrow |V_{THP}|$

NPN BJT Equations

$$I_C \approx I_S e^{\frac{V_{BE}}{v_T}} \left(1 + \frac{V_{CE}}{V_A} \right), V_{BE} > 0$$

$$I_C = \beta I_B$$
 $I_E = (\beta + 1)I_B$ $I_C = \alpha I_E$ $\alpha = \frac{\beta}{\beta + 1}$

Forward Active Region: $V_{BE} > 0, V_{CE} > V_{BE}$

 $Saturation \ Region: \ \ V_{BE} > 0, V_{CE} < V_{BE}$

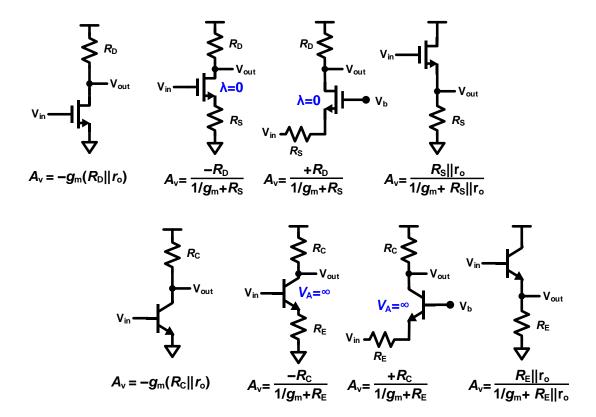
Small-signal Parameters

$$g_m = \frac{I_c}{v_T} \quad r_o = \frac{V_A}{I_C} \quad r_\pi = \frac{\beta}{g_m}$$

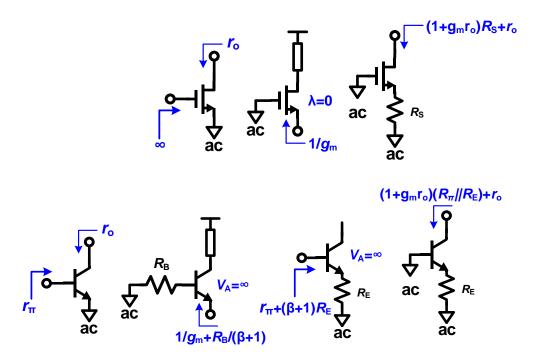
For PNP BJT, use above equations: $V_{BE} \rightarrow V_{EB}$ and $V_{CE} \rightarrow V_{EC}$

Opamp Equations

$$v_{out} = A(v_p - v_m)$$

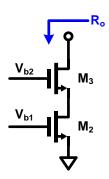

$$A(s) = \frac{A_0}{1 + \frac{s}{\omega_1}}$$

Negative feedback:

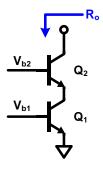

$$A_{CL} \approx \frac{1}{\beta} \left(1 - \frac{1}{A_0 \beta} \right)$$

$$\omega_{p,CL} \approx A_0 \beta \omega_1 = \beta \omega_{un}$$

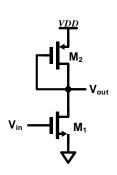
Voltage Gain Equations

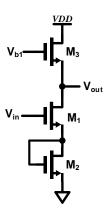


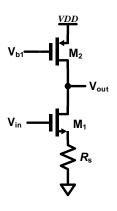
Input and Output Impedances

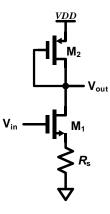


/

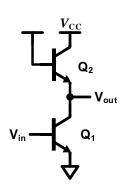

- 1. (10 points) Assume that the transconductances of all the transistors in this problem is equal to g_m and the output resistance is r_o . Also, V_{b1} and V_{b2} are DC bias voltages. Clearly show your work.
- (a) (5 points) Assume that M_1 and M_2 are in saturation. Using small-signal analysis, find the output resistance (R_0) in the circuit shown below.

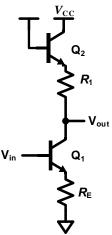


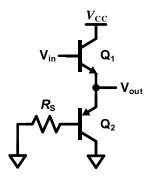

(b) (5 points) Assume that Q_1 and Q_2 are in active region. Using small-signal analysis, find the output resistance (R_0) in the circuit shown below.

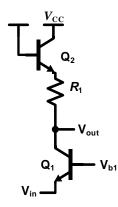


2. (**10 points**) Find small-signal voltage gain of the amplifier stages shown below in terms of transistor small-signal parameters g_{m1} , g_{m2} , r_{o1} , r_{o2} , R_S , R_D , etc. (Assume that all transistors are in saturation). V_{b1} , V_{b2} , etc., are DC bias voltages.

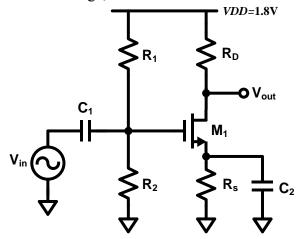






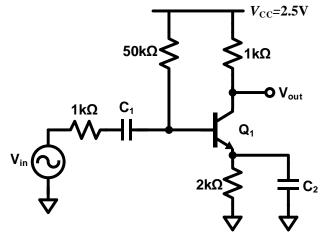


3. (10 points) Find small-signal voltage gain of the amplifier stages shown below in terms of transistor small-signal parameters g_{m1} , g_{m2} , r_{o1} , r_{o2} , $r_{\pi 1}$, $r_{\pi 2}$, R_E , etc. (Assume that all BJTs are in forward active region). V_{b1} , V_{b2} , etc., are DC bias voltages.



4. (20 points) For the circuits seen below, plot the quantity on the y-axis as the voltage V_x is swept from 0 to V_{DD} =1.8V in parts (a,b & e) and 0 to V_{CC} =2.5V in parts (c&d). *Label* the plots and show your work for partial credit.

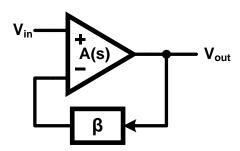
5. (15 points) Design the amplifier shown below for a voltage gain of 5, an input impedance of $50k\Omega$, and a total power budget of 5mW. Assume that $V_{GS}=650mV$ and the voltage drop of 400mV across R_s . Assume that C_1 and C_2 are large, and $\lambda=0$.



(a) (2 points) Given the power budget for the transistor M_1 , estimate the value of the bias current (I_D).

(b) (3 points) Using part (a), Find the value of \mathbf{R}_s , \mathbf{g}_m and \mathbf{R}_D .

(c) (3 points) For the current, I_D , estimate the \mathbf{W}/\mathbf{L} ratio of the transistor.		
(d) (2 points) Find the voltage at the gate of M_1 , (V_G).		
(e) (4 points) Given the input resistance and V_G constraints, estimate the value of resistors \mathbf{R}_1 and \mathbf{R}_2 .		
(f) (1 point) Verify whether M_1 is biased in saturation. If not, how will you fix this design?		


6. (15 points) Consider the amplifier circuit shown below. Assume C_1 and C_2 are very large. Use BJT data from the first page.

(a) (5 points) **Draw** the DC picture (i.e., the equivalent circuit considering only the DC quantities) for the amplifier and find **ALL** the node voltages in the circuit. Verify whether Q₁ biased in forward active region?

(b) (5 points) Draw the AC picture (i.e., the equivalent circuit considering only small-signal quantities) and find the small-signal gain (A_v) of the amplifier. Use forward active equation for Q_1 .	al ıs
(c) (5 points) Find the small-signal input (R_{in}) and output (R_{out}) impedances of the amplifier.	

7. (20 points) Consider the Opamp feedback circuit shown below. Here, β is the feedback factor, and the opamp transfer function is given by $A(s) = \frac{A_0}{s}$.

(a) (7 points) Using the above Opamp, a **non-inverting** amplifier needs to be designed for a closed-loop gain, $A_{CL}=10$, and a gain error of 1%. Determine the required open-loop gain (A_0) of the opamp.

(b) (6 points) Draw the schematic of the non-inverting amplifier in part (a) showing the require resistor values.
(c) (7 points) If the non-inverting amplifier in part (a) is to be designed for a closed-loop bandwidt of $\omega_{p,CL} = 2\pi \cdot 1 MHz$. Determine the required unity-gain frequency (ω_{un}) of the opamp.
of $\omega_{p,CL}=2\pi$. Therefore the required unity gain frequency (ω_{un}) of the opamp.