Name:

SAMPLE EXAM #1

Closed book, closed notes. Calculators may be used for numeric computations only. All work is to be your own - **show your work** for maximum partial credit.

Fundamental Constants

 $k = 1.38 \times 10^{-23}$ J/K $q = 1.60 \times 10^{-19}$ C $K = 273 + {}^{\circ}C$ $V_T = \frac{kT}{q}$

Semiconductor constants for Si $E_g = 1.12 eV$ $n_i(T = 300K) = 1.5 \times 10^{10} cm^{-3}$

PN junction Equations

$$V_{bi} = V_T \ln\left(\frac{N_A N_D}{n_i^2}\right)$$
$$N_A x_p = N_D x_n$$
$$i_D = I_S \left(e^{\frac{v_D}{v_T}} - 1\right) A$$

Carrier Transport Equations

$$J_{n,drift} = qn\mu_{n}E$$
$$J_{p,drift} = qp\mu_{p}E$$
$$J_{n,diff} = qD_{n}\frac{dn}{dx}$$
$$J_{p,diff} = -qD_{p}\frac{dp}{dx}$$
$$D = \mu V_{T}$$

1

1. (20 points) A **pn** junction is created as shown below with $N_A=10^{16}$ cm⁻³ and $N_D=10^{18}$ cm⁻³. Assuming equilibrium conditions, find the majority and minority carrier concentrations in the n and p regions.

	N _D	N _A	
n-Si			p-Si

2. (20 points) A diode is formed from a **pn** junction, where the p-type material is doped **twice as heavily** as the n-type material. In general, the depletion region width is given by

$$w_{d0} = x_n + x_p = \sqrt{\frac{2\varepsilon_s}{q} \left(\frac{1}{N_A} + \frac{1}{N_D}\right) V_{bi}}$$

(a) If the width of the depletion region in the p-type material (x_p) is as shown below, indicate what the width of the depletion region in the n-type material (x_n) is.

(b) When designing a Zener diode device, a narrow depletion region is required. How can this be achieved?

3. (30 points) A p-type bar of silicon is subjected to carrier injection as shown in the figure below. Determine the total current flowing through the device if the cross section area is $1\mu m^2$.

Use: $D_n=30 \text{ cm}^2/\text{s}$ and $D_p=10 \text{ cm}^2/\text{s}$ $L_n=2\mu\text{m}$ and $L_p=3\mu\text{m}$

4

4. (30 points) Plot input/output characteristics for the circuit shown below using:

(a) Ideal diode model ($V_{D,on}=0V$)

(b) Constant diode voltage model ($V_{D,on}=0.8V$) Assume $V_B=2V$.

(c) In part (a), the input is given by $V_{in}(t)=V_p \sin(\omega t)$, where $V_p=5V$ and $\omega=2\pi \cdot 60$ rad/s. Plot input and output waveforms, $V_{in}(t)$ and $V_{out}(t)$ respectively.