CISC 404/604
Homework 1 Solutions

1a. \((B \rightarrow (C \lor D)) \) is valid and \(C \) is unsatisfiable. To prove \(B \rightarrow D \) is valid:
Suppose bwoc \(B \rightarrow D \) is not valid.

\[
\therefore \exists \nu_1 \text{ such that } \nu_1(B) = T \quad (1) \\
\& \nu_1(D) = F \text{ [by defns of validity and \(\rightarrow \)].} \quad (2)
\]

Since \((B \rightarrow (C \lor D)) \) is valid, \(\therefore \nu_1(B \rightarrow (C \lor D)) = T \text{ [by defn of validity].} \)
Since \(\nu_1(B) = T \text{ [by (1)], } \nu_1(C \lor D) = T \text{ [by defn of \(\lor \)].} \)

Since \(C \) is unsatisfiable, \(\therefore \nu_1(C) = F \text{ [by defn of satisfiable].} \)

\[
\therefore \nu_1(D) = T \text{ [by defn of \(\lor \)], which is a contradiction [cf. (2)].}
\]

\(\therefore (B \rightarrow D) \) is valid [proof by contradiction].

1b. \(\Gamma_1 \models B \), \(\therefore \forall \nu, \text{ if } \nu \text{ satisfies } \Gamma_1, \text{ then } \nu(B) = T \text{ [by defn of } \models]. \)
\(\Gamma_2 \models C \), \(\therefore \forall \nu, \text{ if } \nu \text{ satisfies } \Gamma_2, \text{ then } \nu(C) = T \text{ [by defn of } \models]. \)
\(\forall \nu, \text{ if } \nu \text{ satisfies } \Gamma_1 \cup \Gamma_2, \text{ then } \nu(B \lor C) = T \text{ [by defns of satisfies and } \lor]. \)

\(\therefore \forall \nu, \text{ if } \nu \text{ satisfies } \Gamma_1 \cup \Gamma_2, \text{ then } \nu(B \land C) = T \text{ [by defn of } \land]. \)

\(\therefore \Gamma_1 \cup \Gamma_2 \models (B \land C) \text{ [by defn of } \models]. \)

1c. False. Proof by counterexample:
Suppose \(B \) is A (a statement letter), \(C \) is B, and \(D \) is \(\neg B \).

\(\therefore (B \rightarrow (C \lor D)) \) is valid [by defns of \(\lor \) & \(\rightarrow \)],
but neither \(A \rightarrow B \) nor \(A \rightarrow \neg B \) are valid [by defn of validity].

2a. Suppose bwoc \(\{(B \rightarrow (C \rightarrow D)), \neg D\} \not\models (C \rightarrow \neg B) \).

\(\therefore \exists \nu_1 \text{ such that } \nu_1 \text{ satisfies } \{(B \rightarrow (C \rightarrow D)), \neg D\} \)
and \(\nu_1(C \rightarrow \neg B) = F \text{ [by defn of } \models]. \)

\(\therefore \nu_1(B \rightarrow (C \rightarrow D)) = T \) and \(\nu_1(\neg D) = T \text{ [by defns of satisfies],} \)
and \(\nu_1(C) = T \) and \(\nu_1(B) = T \text{ [by defns of } \rightarrow \& \neg]. \)

Since \(\nu_1(B) = T \) and \(\nu_1(B \rightarrow (C \rightarrow D)) = T \text{ [by (2) & (1)]}, \)

\(\therefore \nu_1(C \rightarrow D) = T \text{ [by defn of } \rightarrow]. \)

Since \(\nu_1(C) = T \) and \(\nu_1(C \rightarrow D) = T \text{ [by (2) & (3)]}, \)

\(\therefore \nu_1(D) = T, \text{ which is a contradiction [cf. (1)].} \)

\(\therefore \{(B \rightarrow (C \rightarrow D)), \neg D\} \models (C \rightarrow \neg B) \text{ [proof by contradiction].} \)
2b. \(\Gamma \cup \{ \neg B \} \models C \), \(\because \forall \nu, \text{ if } \nu \text{ satisfies } \Gamma \cup \{ \neg B \}, \text{ then } \nu(C) = T \) [by defn of \(\models \)].

\(\Gamma \cup \{ \neg B \} \models \neg C \), \(\because \forall \nu, \text{ if } \nu \text{ satisfies } \Gamma \cup \{ \neg B \}, \text{ then } \nu(\neg C) = T \) [by defn of \(\models \)].

Suppose \(\exists \nu_1 \) such that \(\nu_1 \) satisfies \(\Gamma \cup \{ \neg B \} \).

\(\therefore \nu_1(C) = T \) and \(\nu_1(\neg C) = T \), which is a contradiction.

\(\therefore \exists \nu \) such that \(\nu \) satisfies \(\Gamma \cup \{ \neg B \} \), \(\therefore \Gamma \cup \{ \neg B \} \) is unsatisfiable.

3(i). Assume (I): If \(\Gamma \models B \), then for some finite subset, \(\Gamma_f \subseteq \Gamma \), \(\Gamma_f \models B \).

To show (II) holds, suppose \(\forall \nu \) such that for every finite subset, \(\Gamma_f \subseteq \Gamma \), \(\Gamma_f \) is satisfiable but \(\Gamma \) is unsatisfiable.

\(\therefore \Gamma \models (C \land \neg C) \), for any \(C \) [vacuously true].

\(\therefore \) for some finite subset, \(\Gamma_f \subseteq \Gamma \), \(\Gamma_f \models (C \land \neg C) \) [by (I)].

\(\therefore \Gamma_f \) is unsatisfiable, which is a contradiction [cf. (1)].

\(\therefore \) If for every finite subset, \(\Gamma_f \subseteq \Gamma \), \(\Gamma_f \) is satisfiable, then \(\Gamma \) is satisfiable, \(\therefore \) (II).

3(ii). Assume (II): If every finite subset of \(\Gamma \) is satisfiable, then \(\Gamma \) is satisfiable.

To show (I) holds, suppose \(\forall \nu \) such that for every finite subset, \(\Gamma_f \subseteq \Gamma \), \(\Gamma_f \) is satisfiable but \(\Gamma \) is unsatisfiable.

\(\therefore \forall \Gamma_f \subseteq \Gamma \), \(\Gamma_f \cup \{ \neg B \} \) is satisfiable [by defn of \(\models \)].

\(\therefore \Gamma \cup \{ \neg B \} \) is satisfiable [by (II)].

\(\therefore \Gamma \not\models B \) [since \(\Gamma \models B \iff \Gamma \cup \{ \neg B \} \) is unsatisfiable],

which is a contradiction [by (1)].

\(\therefore \) If \(\Gamma \models B \), then \(\exists \Gamma_f \subseteq \Gamma \) such that \(\Gamma_f \models B \), \(\therefore \) (I).

4a. Assume \(\Gamma \) is maximally satisfiable (max sat) and suppose \(\Gamma \models B \).

Suppose \(\exists \nu \) such that \(\nu \) satisfies \(\Gamma \cup \{ B \} \) is unsatisfiable [by defn of max sat]. (1)

Since \(\Gamma \) is max sat, \(\therefore \) \(\Gamma \) is satisfiable,

\(\therefore \exists \nu, \text{ say } \nu_1 \), that satisfies \(\Gamma \) [by defn of satisfiable].

Since \(\Gamma \models B \), \(\therefore \nu_1 \) satisfies \(\Gamma \cup \{ B \} \), which is a contradiction [cf. (1)].

\(\therefore B \in \Gamma \) [proof by contradiction].

4b. Assume \(\Gamma \) is maximally satisfiable and suppose \((B \land C) \in \Gamma \).

Suppose \(\exists \nu \) such that \(\nu \) satisfies \(\Gamma \cup \{ B \} \) is unsatisfiable [by defn of max sat]. (1)

Since \(\Gamma \) is max sat, \(\therefore \) \(\Gamma \) is satisfiable,

\(\therefore \exists \nu, \text{ say } \nu_1 \), that satisfies \(\Gamma \) [by defn of satisfiable].

Since \((B \land C) \in \Gamma \), \(\Gamma \models (B \land C) \) and \(\Gamma \models B \) [by defns of max sat & \(\land \)].

Since \(\Gamma \models B \), \(\therefore \nu_1 \) satisfies \(\Gamma \cup \{ B \} \), which is a contradiction [cf. (1)].

\(\therefore B \in \Gamma \) [proof by contradiction] and similarly for \(C \in \Gamma \).
4c. Assume Γ is maximally satisfiable and suppose $B \in \Gamma$.

To show $\neg B \not\in \Gamma$, suppose bwoc otherwise: $\neg B \in \Gamma$.
Since $B \in \Gamma$ and $\neg B \in \Gamma$, $\therefore \Gamma$ is unsatisfiable [by defn of satisfiable],
which is a contradiction, since Γ is max sat.
$\therefore \neg B \not\in \Gamma$ [proof by contradiction]. (1)

Assume Γ is maximally satisfiable and suppose $\neg B \not\in \Gamma$. (2)
To show $B \in \Gamma$, suppose bwoc otherwise: $B \not\in \Gamma$.
Since Γ is max sat, $\therefore \Gamma \cup \{B\}$ is unsatisfiable [by defn of max sat].
Since Γ is satisfiable, $\therefore \exists \nu$, say ν_1, that satisfies Γ [by defn of satisfiable].
Since $\Gamma \cup \{B\}$ is unsatisfiable, $\therefore \nu_1(B) = F$,
or in other words, $\nu_1(\neg B) = T$. [by defn of \neg]
$\therefore \nu_1$ satisfies $\Gamma \cup \{\neg B\}$, but since this set is not unsatisfiable,
it must mean $\neg B \in \Gamma$, which is a contradiction [cf. (2)].
$\therefore B \in \Gamma$ [proof by contradiction]. (3)

\therefore If Γ is max sat, then $B \in \Gamma \iff \neg B \not\in \Gamma$ [by (1) & (3)].